Answer :
Certainly! Let's expand and simplify the polynomial expression [tex]\(\left(7 p^4 + 9\right)\left(49 p^8 - 7 p^4 q + q^2\right)\)[/tex].
We need to apply the distributive property (also known as the FOIL method for binomials) to expand this expression.
Step 1: Distribute [tex]\( 7p^4 \)[/tex] in the first polynomial to each term in the second polynomial:
[tex]\[ 7p^4 \cdot (49p^8 - 7p^4q + q^2) \][/tex]
Perform each multiplication:
[tex]\[ 7p^4 \cdot 49p^8 = 343p^{12} \][/tex]
[tex]\[ 7p^4 \cdot (-7p^4q) = -49p^8q \][/tex]
[tex]\[ 7p^4 \cdot q^2 = 7p^4q^2 \][/tex]
So, the distributed result of [tex]\( 7p^4 \)[/tex] is:
[tex]\[ 343p^{12} - 49p^8q + 7p^4q^2 \][/tex]
Step 2: Distribute [tex]\( 9 \)[/tex] in the first polynomial to each term in the second polynomial:
[tex]\[ 9 \cdot (49p^8 - 7p^4q + q^2) \][/tex]
Perform each multiplication:
[tex]\[ 9 \cdot 49p^8 = 441p^8 \][/tex]
[tex]\[ 9 \cdot (-7p^4q) = -63p^4q \][/tex]
[tex]\[ 9 \cdot q^2 = 9q^2 \][/tex]
So, the distributed result of [tex]\( 9 \)[/tex] is:
[tex]\[ 441p^8 - 63p^4q + 9q^2 \][/tex]
Step 3: Combine all the terms from both distributions:
[tex]\[ 343p^{12} - 49p^8q + 7p^4q^2 + 441p^8 - 63p^4q + 9q^2 \][/tex]
Step 4: Group and simplify like terms:
[tex]\[ 343p^{12} + 441p^8 - 49p^8q - 63p^4q + 7p^4q^2 + 9q^2 \][/tex]
There are no further like terms to combine, so the final expanded form of the polynomial is:
[tex]\[ 343p^{12} + 441p^8 - 49p^8q - 63p^4q + 7p^4q^2 + 9q^2 \][/tex]
This is the fully expanded and simplified result of the given polynomial expression.
We need to apply the distributive property (also known as the FOIL method for binomials) to expand this expression.
Step 1: Distribute [tex]\( 7p^4 \)[/tex] in the first polynomial to each term in the second polynomial:
[tex]\[ 7p^4 \cdot (49p^8 - 7p^4q + q^2) \][/tex]
Perform each multiplication:
[tex]\[ 7p^4 \cdot 49p^8 = 343p^{12} \][/tex]
[tex]\[ 7p^4 \cdot (-7p^4q) = -49p^8q \][/tex]
[tex]\[ 7p^4 \cdot q^2 = 7p^4q^2 \][/tex]
So, the distributed result of [tex]\( 7p^4 \)[/tex] is:
[tex]\[ 343p^{12} - 49p^8q + 7p^4q^2 \][/tex]
Step 2: Distribute [tex]\( 9 \)[/tex] in the first polynomial to each term in the second polynomial:
[tex]\[ 9 \cdot (49p^8 - 7p^4q + q^2) \][/tex]
Perform each multiplication:
[tex]\[ 9 \cdot 49p^8 = 441p^8 \][/tex]
[tex]\[ 9 \cdot (-7p^4q) = -63p^4q \][/tex]
[tex]\[ 9 \cdot q^2 = 9q^2 \][/tex]
So, the distributed result of [tex]\( 9 \)[/tex] is:
[tex]\[ 441p^8 - 63p^4q + 9q^2 \][/tex]
Step 3: Combine all the terms from both distributions:
[tex]\[ 343p^{12} - 49p^8q + 7p^4q^2 + 441p^8 - 63p^4q + 9q^2 \][/tex]
Step 4: Group and simplify like terms:
[tex]\[ 343p^{12} + 441p^8 - 49p^8q - 63p^4q + 7p^4q^2 + 9q^2 \][/tex]
There are no further like terms to combine, so the final expanded form of the polynomial is:
[tex]\[ 343p^{12} + 441p^8 - 49p^8q - 63p^4q + 7p^4q^2 + 9q^2 \][/tex]
This is the fully expanded and simplified result of the given polynomial expression.