For what value of [tex]\( p \)[/tex] are the vectors [tex]\( p\mathbf{i} - 3\mathbf{j} \)[/tex] and [tex]\( 3\mathbf{i} - 2\mathbf{j} \)[/tex] perpendicular?

1. [tex]\(-3\)[/tex]

2. [tex]\(-2\)[/tex]

3. [tex]\(2\)[/tex]

4. [tex]\(1\)[/tex]



Answer :

To determine the value of [tex]\( p \)[/tex] such that the vectors [tex]\( \vec{v_1} = p\vec{i} - 3\vec{j} \)[/tex] and [tex]\( \vec{v_2} = 3\vec{i} - 2\vec{j} \)[/tex] are perpendicular, we need to use the property that two vectors are perpendicular if and only if their dot product is zero.

Given:
[tex]\[ \vec{v_1} = p\vec{i} - 3\vec{j} \][/tex]
[tex]\[ \vec{v_2} = 3\vec{i} - 2\vec{j} \][/tex]

The dot product of two vectors [tex]\(\vec{a} = a_1\vec{i} + a_2\vec{j}\)[/tex] and [tex]\(\vec{b} = b_1\vec{i} + b_2\vec{j}\)[/tex] is given by:
[tex]\[ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 \][/tex]

Applying this to our vectors [tex]\(\vec{v_1}\)[/tex] and [tex]\(\vec{v_2}\)[/tex]:
[tex]\[ \vec{v_1} \cdot \vec{v_2} = (p\vec{i} - 3\vec{j}) \cdot (3\vec{i} - 2\vec{j}) = p \cdot 3 + (-3) \cdot (-2) \][/tex]

Calculating the components:
[tex]\[ \vec{v_1} \cdot \vec{v_2} = 3p + 6 \][/tex]

For the vectors to be perpendicular, the dot product must be equal to zero:
[tex]\[ 3p + 6 = 0 \][/tex]

Solving for [tex]\( p \)[/tex]:
[tex]\[ 3p + 6 = 0 \][/tex]
[tex]\[ 3p = -6 \][/tex]
[tex]\[ p = -2 \][/tex]

Thus, the value of [tex]\( p \)[/tex] that makes the vectors [tex]\( p\vec{i} - 3\vec{j} \)[/tex] and [tex]\( 3\vec{i} - 2\vec{j} \)[/tex] perpendicular is:
[tex]\[ \boxed{-2} \][/tex]