Find the value of [tex]\( k \)[/tex] for which [tex]\( 9x^2 + 24x + k \)[/tex] has equal roots.

A. [tex]\(-10\)[/tex]
B. [tex]\(16\)[/tex]
C. [tex]\(124\)[/tex]
D. [tex]\(-16\)[/tex]



Answer :

To find the value of [tex]\( k \)[/tex] for which the quadratic equation [tex]\( 9x^2 + 24x + k \)[/tex] has equal roots, we will consider the condition for equal roots in a quadratic equation.

For a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] to have equal roots, its discriminant must be zero. The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]

Given the quadratic equation [tex]\( 9x^2 + 24x + k \)[/tex], we identify the coefficients:
[tex]\[ a = 9, \quad b = 24, \quad c = k \][/tex]

The condition for equal roots is:
[tex]\[ \Delta = b^2 - 4ac = 0 \][/tex]

Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the discriminant formula, we get:
[tex]\[ (24)^2 - 4(9)(k) = 0 \][/tex]

Next, we calculate [tex]\( (24)^2 \)[/tex]:
[tex]\[ 24^2 = 576 \][/tex]

Substituting this back into our equation, we have:
[tex]\[ 576 - 4 \cdot 9 \cdot k = 0 \][/tex]

Simplifying:
[tex]\[ 576 - 36k = 0 \][/tex]

To solve for [tex]\( k \)[/tex], we isolate [tex]\( k \)[/tex] on one side of the equation:
[tex]\[ 576 = 36k \][/tex]

Dividing both sides by 36:
[tex]\[ k = \frac{576}{36} \][/tex]

Calculating the division:
[tex]\[ k = 16 \][/tex]

So, the value of [tex]\( k \)[/tex] for which the quadratic equation [tex]\( 9x^2 + 24x + k \)[/tex] has equal roots is:
\[
\boxed{16}