Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ 15730400 = 1,40,00,000 \left(1 + \frac{R}{100}\right)^2 \][/tex]

Response:



Answer :

To solve the equation [tex]\(15730400 = 14,000,000 \left(1 + \frac{R}{100}\right)^2\)[/tex] for [tex]\(R\)[/tex], follow these steps:

1. Identify the given constants and variables:
[tex]\[ A = 15,730,400 \quad \text{and} \quad P = 14,000,000 \][/tex]
Where [tex]\(A\)[/tex] is the future value and [tex]\(P\)[/tex] is the present value.

2. Rearrange the given equation:
[tex]\[ A = P \left(1 + \frac{R}{100}\right)^2 \][/tex]
Dividing both sides by [tex]\(P\)[/tex], we get:
[tex]\[ \frac{A}{P} = \left(1 + \frac{R}{100}\right)^2 \][/tex]

3. Calculate the ratio [tex]\( \frac{A}{P} \)[/tex]:
[tex]\[ \frac{15730400}{14000000} = 1.1236 \][/tex]

4. Take the square root of both sides to solve for [tex]\( \left(1 + \frac{R}{100}\right) \)[/tex]:
[tex]\[ \sqrt{1.1236} = 1 + \frac{R}{100} \][/tex]
[tex]\[ 1.06 = 1 + \frac{R}{100} \][/tex]

5. Isolate [tex]\(R\)[/tex]:
Subtract 1 from both sides:
[tex]\[ 1.06 - 1 = \frac{R}{100} \][/tex]
[tex]\[ 0.06 = \frac{R}{100} \][/tex]

6. Multiply both sides by 100 to solve for [tex]\(R\)[/tex]:
[tex]\[ R = 0.06 \times 100 \][/tex]
[tex]\[ R = 6 \][/tex]

Therefore, the rate [tex]\(R\)[/tex] is 6%.