To determine the radii of the given circle equations, let's analyze each equation step-by-step.
### 1. Analyzing the Equation [tex]\(4x^2 + 4y^2 - 16x - 24y + 51 = 0\)[/tex]
From our calculations,
- The radius for this equation is determined to be 0.5.
### 2. Analyzing the Equation [tex]\(2x^2 + 2y^2 + 16x - 4y + 30 = 0\)[/tex]
From our calculations,
- The radius for this equation is determined to be 1.41421356237310 (which is approximately [tex]\(\sqrt{2}\)[/tex]).
### 3. Analyzing the Equation [tex]\(x^2 + y^2 + 6x - 4y - 20 = 0\)[/tex]
From our calculations,
- The radius for this equation is determined to be 5.74456264653803.
Given these radii, let's assign the equations to the appropriate categories:
#### Smallest Radius Length
- Equation: [tex]\(4x^2 + 4y^2 - 16x - 24y + 51 = 0\)[/tex]
- Radius: 0.5
#### Largest Radius Length
- Equation: [tex]\(x^2 + y^2 + 6x - 4y - 20 = 0\)[/tex]
- Radius: 5.74456264653803
Now we can complete the table:
[tex]\[
\begin{tabular}{|l|l|}
\hline Smallest Radius Length & Largest Radius Length \\
\hline 4x^2 + 4y^2 - 16x - 24y + 51 = 0 & x^2 + y^2 + 6x - 4y - 20 = 0 \\
\hline
\end{tabular}
\][/tex]