Answer :

To add the fractions [tex]\(\frac{2}{5}\)[/tex] and [tex]\(\frac{7}{13}\)[/tex], we need to follow these steps:

1. Find a common denominator:
- To add fractions, both need the same denominator. The common denominator can be found by multiplying the denominators of the two fractions.
- For [tex]\(\frac{2}{5}\)[/tex] and [tex]\(\frac{7}{13}\)[/tex], we multiply [tex]\(5\)[/tex] and [tex]\(13\)[/tex]:
[tex]\[ 5 \times 13 = 65 \][/tex]
- Thus, [tex]\(65\)[/tex] is the common denominator.

2. Adjust the numerators to match the common denominator:
- For the fraction [tex]\(\frac{2}{5}\)[/tex]:
[tex]\[ \frac{2}{5} = \frac{2 \times 13}{5 \times 13} = \frac{26}{65} \][/tex]
- For the fraction [tex]\(\frac{7}{13}\)[/tex]:
[tex]\[ \frac{7}{13} = \frac{7 \times 5}{13 \times 5} = \frac{35}{65} \][/tex]

3. Add the adjusted numerators:
- Now that both fractions have the same denominator, we can add the numerators:
[tex]\[ \frac{26}{65} + \frac{35}{65} = \frac{26 + 35}{65} = \frac{61}{65} \][/tex]

Thus, the sum of [tex]\(\frac{2}{5}\)[/tex] and [tex]\(\frac{7}{13}\)[/tex] is:

[tex]\[ \frac{61}{65} \][/tex]

So, [tex]\(\frac{2}{5} + \frac{7}{13} = \frac{61}{65}\)[/tex].