A circle has the equation

[tex]\[ x^2 + y^2 + 8x - 4y + k = 0 \][/tex]

where [tex]\( k \)[/tex] is a constant.

(a) Find the coordinates of the center of the circle.

Given that the [tex]\( x \)[/tex]-axis is a tangent to the circle,

(b) find the value of [tex]\( k \)[/tex].



Answer :

Sure, let's solve the given problem step by step. We are given the equation of a circle:
[tex]\[ x^2 + y^2 + 8x - 4y + k = 0 \][/tex]
and we need to find the coordinates of the center of the circle and the value of [tex]\( k \)[/tex].

### Part (a): Finding the coordinates of the center of the circle

To find the center, we first need to rewrite the given equation in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. We do this by completing the square for both [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms.

1. Complete the square for the [tex]\( x \)[/tex]-terms:

The [tex]\( x \)[/tex]-terms in the equation are [tex]\( x^2 + 8x \)[/tex].

- Take the coefficient of [tex]\( x \)[/tex], which is 8, divide it by 2 to get 4, and then square it to get 16.
- Add and subtract 16 to complete the square.

So, [tex]\( x^2 + 8x \rightarrow (x + 4)^2 - 16 \)[/tex].

2. Complete the square for the [tex]\( y \)[/tex]-terms:

The [tex]\( y \)[/tex]-terms in the equation are [tex]\( y^2 - 4y \)[/tex].

- Take the coefficient of [tex]\( y \)[/tex], which is -4, divide it by 2 to get -2, and then square it to get 4.
- Add and subtract 4 to complete the square.

So, [tex]\( y^2 - 4y \rightarrow (y - 2)^2 - 4 \)[/tex].

3. Rewrite the equation with completed squares:

Combining the completed squares, we get:
[tex]\[ (x + 4)^2 - 16 + (y - 2)^2 - 4 + k = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y - 2)^2 - 20 + k = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y - 2)^2 = 20 - k \][/tex]

Thus, the standard form of the circle's equation is:
[tex]\[ (x + 4)^2 + (y - 2)^2 = r^2 \][/tex]

From this equation, we can see that the center of the circle is at:
[tex]\[ (h, k) = (-4, 2) \][/tex]

### Part (b): Finding the value of [tex]\( k \)[/tex]

Given that the [tex]\( x \)[/tex]-axis is a tangent to the circle, the distance from the center of the circle to the x-axis must be equal to the radius of the circle [tex]\( r \)[/tex].

1. Find the radius:

The radius [tex]\( r \)[/tex] is the distance from the center of the circle to the [tex]\( x \)[/tex]-axis. Since the [tex]\( x \)[/tex]-axis is a tangent and the center's [tex]\( y \)[/tex]-coordinate is 2, the distance (or radius) [tex]\( r \)[/tex] must be 2.

2. Determine the value of [tex]\( k \)[/tex]:

We know the radius [tex]\( r = 2 \)[/tex], so [tex]\( r^2 = 4 \)[/tex].

Using the standard form equation:
[tex]\[ (x + 4)^2 + (y - 2)^2 = r^2 \][/tex]
and substituting [tex]\( r^2 = 4 \)[/tex], we get:
[tex]\[ (x + 4)^2 + (y - 2)^2 = 4 \][/tex]

We also have:
[tex]\[ (x + 4)^2 + (y - 2)^2 = 20 - k \][/tex]

Setting the above expressions equal to each other gives:
[tex]\[ 4 = 20 - k \][/tex]

Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 20 - 4 \][/tex]
[tex]\[ k = 16 \][/tex]

So the value of [tex]\( k \)[/tex] is:
[tex]\[ k = 16 \][/tex]

Therefore, the coordinates of the center of the circle are:
[tex]\[ (-4, 2) \][/tex]
and the value of [tex]\( k \)[/tex] is:
[tex]\[ 16 \][/tex]