Answer :
To determine the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular, we need to find the value of [tex]\( x \)[/tex] for which the determinant of the matrix [tex]\( X \)[/tex] equals zero. The matrix in question is:
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]