Rewrite the following expression for clarity:

[tex]\[
\begin{array}{c}
17 \quad \times \quad 13 \\
2.2 \quad \times \quad 22
\end{array}
\][/tex]

In the original expression, it looks like there's an extra [tex]$\begin{array}{l}5.21 \times\end{array}$[/tex], which is not clearly connected to the problem. The rewritten version should help in identifying the two separate multiplication problems.



Answer :

Let's solve this step-by-step.

### Step 1: Compute 17 13

1. Calculate [tex]\( 17 \times 3 \)[/tex]:
[tex]\( 17 \times 3 = 51 \)[/tex]
2. Calculate [tex]\( 17 \times 10 \)[/tex]:
[tex]\( 17 \times 10 = 170 \)[/tex]
3. Add the two results:
[tex]\( 51 + 170 = 221 \)[/tex]

So, [tex]\( 17 \times 13 = 221 \)[/tex].

### Step 2: Compute 2.2
22

1. Calculate [tex]\( 2.2 \times 2 \)[/tex]:
[tex]\( 2.2 \times 2 = 4.4 \)[/tex]
2. Calculate [tex]\( 2.2 \times 20 \)[/tex]:
[tex]\( 2.2 \times 20 = 44 \)[/tex]
3. Add the two results:
[tex]\( 4.4 + 44 = 48.4 \)[/tex]

So, [tex]\( 2.2 \times 22 = 48.4 \)[/tex].

### Step 3: 5.21 (Standalone number)

There is no multiplication involved here. It's already given as a standalone number:
5.21

### Summary:

1. [tex]\( 17 \times 13 = 221 \)[/tex]
2. [tex]\( 2.2 \times 22 = 48.4 \)[/tex]
3. The standalone number is 5.21.

So the final results are:
[tex]\[ (221, 48.4, 5.21) \][/tex]