Solve the following:

The enthalpy of formation for [tex]\( C_6H_6(l) \)[/tex] is [tex]\( 49.0 \, \text{kJ/mol} \)[/tex]. Consider the following reaction:

[tex]\[
6C(s, \text{graphite}) + 3H_2(g) \rightarrow C_6H_6(l)
\][/tex]

Is the reaction endothermic or exothermic, and what is the enthalpy of reaction?

Use [tex]\(\Delta H_{\text{rxn}} = \sum\left(\Delta H_{\text{f,products}}\right) - \sum\left(\Delta H_{\text{f,reactants}}\right)\)[/tex].

A. Exothermic; [tex]\(\Delta H_{\text{rxn}} = 49.0 \, \text{kJ}\)[/tex]

B. Exothermic; [tex]\(\Delta H_{\text{rxn}} = -49.0 \, \text{kJ}\)[/tex]

C. Endothermic; [tex]\(\Delta H_{\text{rxn}} = 49.0 \, \text{kJ}\)[/tex]

D. Endothermic; [tex]\(\Delta H_{\text{rxn}} = -49.0 \, \text{kJ}\)[/tex]



Answer :

To determine whether the given reaction is endothermic or exothermic and to find the enthalpy of reaction, we will use the enthalpy of formation values and apply the given formula:

Equation:
[tex]\[ \Delta H_{\text{reaction}} = \sum \left( \Delta H_{\text{f,products}} \right) - \sum \left( \Delta H_{\text{f,reactants}} \right) \][/tex]

Given:
- The enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) for [tex]\(C_6H_6(l)\)[/tex] is [tex]\(49.0 \, \text{kJ/mol}\)[/tex].
- The reactants are elemental carbon (graphite) and hydrogen gas [tex]\(H_2(g)\)[/tex]. Since these are elements in their standard states, their enthalpies of formation are [tex]\(0 \, \text{kJ/mol}\)[/tex].

Let’s calculate the enthalpy change for the reaction step-by-step:

### Step 1: Identify the enthalpies of formation of products and reactants

- [tex]\( \Delta H_f \)[/tex] for [tex]\( C_6H_6(l) \)[/tex] = [tex]\( 49.0 \, \text{kJ/mol} \)[/tex]
- [tex]\( \Delta H_f \)[/tex] for [tex]\( C (s, \text{graphite}) \)[/tex] = [tex]\( 0 \, \text{kJ/mol} \)[/tex]
- [tex]\( \Delta H_f \)[/tex] for [tex]\( H_2(g) \)[/tex] = [tex]\( 0 \, \text{kJ/mol} \)[/tex]

### Step 2: Apply the formula

The enthalpy of reaction [tex]\(\Delta H_{\text{reaction}}\)[/tex] is given by:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_f(C_6H_6(l)) - [6 \cdot \Delta H_f(C(s, \text{graphite})) + 3 \cdot \Delta H_f(H_2(g))] \][/tex]

Plugging in the values:

[tex]\[ \Delta H_{\text{reaction}} = 49.0 \, \text{kJ/mol} - [6 \cdot 0 + 3 \cdot 0] \\ \Delta H_{\text{reaction}} = 49.0 \, \text{kJ/mol} - 0 \\ \Delta H_{\text{reaction}} = 49.0 \, \text{kJ/mol} \][/tex]

### Step 3: Determine the type of reaction

Since the enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is positive ([tex]\(49.0 \, \text{kJ/mol}\)[/tex]), it indicates that the reaction absorbs heat.

Therefore, the reaction is endothermic.

### Conclusion

- The reaction is endothermic.
- The enthalpy of reaction [tex]\(\Delta H_{\text{reaction}}\)[/tex] is [tex]\(49.0 \, \text{kJ/mol}\)[/tex].

Thus, the correct choice is:
endothermic; [tex]$\Delta H_{\text{rxn}} = 49.0 \, \text{kJ}$[/tex].