Based on the equation and the information in the table, what is the enthalpy of the reaction?

Use
[tex]\[ \Delta H_{\text{rxn}} = \sum \left( \Delta H_{\text{f, products}} \right) - \sum \left( \Delta H_{\text{f, reactants}} \right) \][/tex]

\begin{tabular}{|c|c|}
\hline
\multicolumn{2}{|c|}{Standard Enthalpies of Formation} \\
\hline
Substance & [tex]$\Delta H_f \, (\text{kJ/mol})$[/tex] \\
\hline
[tex]$\text{C}_2\text{H}_2(g)$[/tex] & 226.73 \\
\hline
[tex]$\text{CaCO}_3(s)$[/tex] & -1206.92 \\
\hline
[tex]$\text{CaO}(s)$[/tex] & -635.09 \\
\hline
[tex]$\text{CO}(g)$[/tex] & -110.525 \\
\hline
[tex]$\text{CO}_2(g)$[/tex] & -393.509 \\
\hline
[tex]$\text{H}_2\text{O}(l)$[/tex] & -285.8 \\
\hline
[tex]$\text{H}_2\text{O}(g)$[/tex] & -241.818 \\
\hline
[tex]$\text{C}(s)$[/tex], diamond & 1.895 \\
\hline
[tex]$\text{C}(s)$[/tex], graphite & 0.0 \\
\hline
\end{tabular}

Mark this and return
Save and Exit
Next
Submit



Answer :

Sure, let's go through the calculation step-by-step for the given reaction, which is:

[tex]\[ \text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \][/tex]

We are given the standard enthalpies of formation ([tex]\( \Delta H_f \)[/tex]) for various substances. The relevant enthalpies for the substances in this reaction are:
- [tex]\( \Delta H_f \)[/tex] of [tex]\( \text{CaCO}_3(s) \)[/tex] = -1206.92 kJ/mol
- [tex]\( \Delta H_f \)[/tex] of [tex]\( \text{CaO}(s) \)[/tex] = -635.09 kJ/mol
- [tex]\( \Delta H_f \)[/tex] of [tex]\( \text{CO}_2(g) \)[/tex] = -393.509 kJ/mol

### Step 1: Calculate the sum of the standard enthalpies of formation for the reactants

For the reactants:
[tex]\[ \sum (\Delta H_{f, \text{reactants}}) = \Delta H_f (\text{CaCO}_3(s)) = -1206.92 \, \text{kJ/mol} \][/tex]

### Step 2: Calculate the sum of the standard enthalpies of formation for the products

For the products:
[tex]\[ \sum (\Delta H_{f, \text{products}}) = \Delta H_f (\text{CaO}(s)) + \Delta H_f (\text{CO}_2(g)) \][/tex]
[tex]\[ \sum (\Delta H_{f, \text{products}}) = -635.09 \, \text{kJ/mol} + (-393.509 \, \text{kJ/mol}) \][/tex]
[tex]\[ = -1028.599 \, \text{kJ/mol} \][/tex]

### Step 3: Use the enthalpy change formula to find the enthalpy of reaction

Using the formula:
[tex]\[ \Delta H_{x \times n} = \sum (\Delta H_{f, \text{products}}) - \sum (\Delta H_{f, \text{reactants}}) \][/tex]
we get:
[tex]\[ \Delta H_{\text{reaction}} = -1028.599 \, \text{kJ/mol} - (-1206.92 \, \text{kJ/mol}) \][/tex]
[tex]\[ = -1028.599 \, \text{kJ/mol} + 1206.92 \, \text{kJ/mol} \][/tex]
[tex]\[ = 178.321 \, \text{kJ/mol} \][/tex]

So, the enthalpy of the reaction is [tex]\( 178.321 \, \text{kJ/mol} \)[/tex].

### Summary:
- Sum of standard enthalpies of formation for reactants: [tex]\( -1206.92 \, \text{kJ/mol} \)[/tex]
- Sum of standard enthalpies of formation for products: [tex]\( -1028.599 \, \text{kJ/mol} \)[/tex]
- Enthalpy of the reaction: [tex]\( 178.321 \, \text{kJ/mol} \)[/tex]

Thus, the enthalpy ([tex]\( \Delta H \)[/tex]) of the reaction [tex]\(\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \)[/tex] is [tex]\( 178.321 \, \text{kJ/mol} \)[/tex].