Find the distance between the two points, rounding to the nearest tenth if necessary.

[tex]\((-6, -1)\)[/tex] and [tex]\((-9, -6)\)[/tex]

Answer: [tex]\(\square\)[/tex]

Submit Answer



Answer :

To find the distance between the two points [tex]\((-6, -1)\)[/tex] and [tex]\((-9, -6)\)[/tex], we will follow these steps:

1. Identify the coordinates:
- Point 1: [tex]\((x_1, y_1) = (-6, -1)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (-9, -6)\)[/tex]

2. Calculate the differences between the x and y coordinates:
- [tex]\(\Delta x = x_2 - x_1 = -9 - (-6)\)[/tex]
- [tex]\(\Delta y = y_2 - y_1 = -6 - (-1)\)[/tex]

Performing the calculations:
- [tex]\(\Delta x = -9 + 6 = -3\)[/tex]
- [tex]\(\Delta y = -6 + 1 = -5\)[/tex]

3. Use the Pythagorean theorem to calculate the distance [tex]\(d\)[/tex] between the points:
- The formula for the distance [tex]\(d\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ d = \sqrt{(\Delta x)^2 + (\Delta y)^2} \][/tex]

Substitute [tex]\(\Delta x\)[/tex] and [tex]\(\Delta y\)[/tex] into the formula:
- [tex]\[ d = \sqrt{(-3)^2 + (-5)^2} \][/tex]

Calculate the squares:
- [tex]\[ d = \sqrt{9 + 25} \][/tex]

Add these values:
- [tex]\[ d = \sqrt{34} \][/tex]

Calculate the square root:
- [tex]\[ d \approx 5.830951894845301 \][/tex]

4. Round the distance to the nearest tenth:
- The distance [tex]\(d \approx 5.830951894845301\)[/tex] rounded to the nearest tenth is [tex]\(5.8\)[/tex].

Therefore, the distance between the two points [tex]\((-6, -1)\)[/tex] and [tex]\((-9, -6)\)[/tex] is approximately [tex]\(5.8\)[/tex].