Here is a table of values for [tex]y=f(x)[/tex]:
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|}
\hline
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
[tex]$f(x)$[/tex] & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
\end{tabular}

Mark the statements that are true:
A. The range for [tex]f(x)[/tex] is all real numbers.
B. The domain for [tex]f(x)[/tex] is the set [tex]\{-2,-1,0,1,2,3,4,5,6\}[/tex].
C. [tex]f(-1)=6[/tex]
D. [tex]f(5)=-2[/tex]



Answer :

Let's examine each statement based on the given table of values for [tex]\( y = f(x) \)[/tex].

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline f(x) & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ \hline \end{array} \][/tex]

### Statement 1: "The range for [tex]\( f(x) \)[/tex] is all real numbers."

To evaluate this statement, we need to consider the values that [tex]\( f(x) \)[/tex] can take. From the table, the values of [tex]\( f(x) \)[/tex] are:

[tex]\[ f(x) = \{5, 6, 7, 8, 9, 10, 11, 12, 13\} \][/tex]

The range of [tex]\( f(x) \)[/tex] according to the table is a finite set of specific integers. Therefore, the claim that the range is all real numbers is not true because it does not include all possible real numbers—only a specific subset of integers.

So, this statement is false.

### Statement 2: "The domain for [tex]\( f(x) \)[/tex] is the set [tex]\(\{-2, -1, 0, 1, 2, 3, 4, 5, 6\}\)[/tex]."

The domain of a function is the set of all possible input values (x-values) for which the function is defined. From the table, the x-values are:

[tex]\[ x = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\} \][/tex]

This matches exactly with the given set in the statement.

So, this statement is true.

### Statement 3: "[tex]\( f(-1) = 6 \)[/tex]"

To evaluate this statement, look at the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -1 \)[/tex] from the table:

[tex]\[ f(-1) = 6 \][/tex]

Therefore, this statement is true.

### Statement 4: "[tex]\( f(5) = -2 \)[/tex]"

To evaluate this statement, look at the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 5 \)[/tex] from the table:

[tex]\[ f(5) = 12 \][/tex]

Therefore, the statement [tex]\( f(5) = -2 \)[/tex] is not correct, as the actual value is 12.

So, this statement is false.

### Summary

Based on the analysis:

- Statement 1: False
- Statement 2: True
- Statement 3: True
- Statement 4: False