Answer :

To find the product [tex]\((x + 2y)(x - 2y)\)[/tex], we can use the difference of squares formula. The difference of squares formula states that:

[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]

In this particular problem, we can identify [tex]\(a\)[/tex] as [tex]\(x\)[/tex] and [tex]\(b\)[/tex] as [tex]\(2y\)[/tex]. Applying the difference of squares formula, we get:

[tex]\[ (x + 2y)(x - 2y) = x^2 - (2y)^2 \][/tex]

Next, we need to simplify [tex]\((2y)^2\)[/tex]:

[tex]\[ (2y)^2 = 4y^2 \][/tex]

Substituting this back into our expression, we obtain:

[tex]\[ x^2 - 4y^2 \][/tex]

Therefore, the product of [tex]\((x + 2y)(x - 2y)\)[/tex] is:

[tex]\[ x^2 - 4y^2 \][/tex]