Ex. 2: The area of the region bounded by the ellipse [tex]\frac{x^2}{64} + \frac{y^2}{100} = 1[/tex] is ______ sq. units.

A. [tex]64 \pi[/tex]
B. [tex]80 \pi[/tex]
C. [tex]\pi / 80[/tex]
D. [tex]100 \pi[/tex]



Answer :

To find the area of the region bounded by the given ellipse [tex]\( \frac{x^2}{64} + \frac{y^2}{100} = 1 \)[/tex], we need to follow these steps:

1. Understand the standard form of the ellipse equation:
The standard form of an ellipse equation is:
[tex]\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \][/tex]

2. Identify [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex] from the given equation:
From the given equation [tex]\( \frac{x^2}{64} + \frac{y^2}{100} = 1 \)[/tex]:
- [tex]\( a^2 = 64 \)[/tex]
- [tex]\( b^2 = 100 \)[/tex]

3. Calculate [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
To find [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we take the square root of [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex]:
[tex]\[ a = \sqrt{64} = 8 \][/tex]
[tex]\[ b = \sqrt{100} = 10 \][/tex]

4. Use the formula for the area of an ellipse:
The area [tex]\( A \)[/tex] of an ellipse is given by the formula:
[tex]\[ A = \pi \cdot a \cdot b \][/tex]

5. Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
[tex]\[ A = \pi \cdot 8 \cdot 10 \][/tex]

6. Calculate the area:
[tex]\[ A = 80\pi \][/tex]

Therefore, the area of the region bounded by the ellipse is:
[tex]\[ \boxed{80 \pi \text{ sq. units}} \][/tex]

Thus, the correct option is (B) [tex]\( 80 \pi \)[/tex].