Answer :

To find the product of the expression [tex]\((x + 2y)(x - 2y)\)[/tex], we can use the formula for the difference of squares. This formula states that for any two terms [tex]\(a\)[/tex] and [tex]\(b\)[/tex],

[tex]\[ (a + b)(a - b) = a^2 - b^2. \][/tex]

In this case, we can identify [tex]\(a = x\)[/tex] and [tex]\(b = 2y\)[/tex].

Now, applying the difference of squares formula to the given expression [tex]\((x + 2y)(x - 2y)\)[/tex]:

[tex]\[ (x + 2y)(x - 2y) = x^2 - (2y)^2. \][/tex]

Next, we need to simplify [tex]\((2y)^2\)[/tex]. When squaring [tex]\(2y\)[/tex], we get:

[tex]\[ (2y)^2 = 2^2 \cdot y^2 = 4y^2. \][/tex]

So the expression becomes:

[tex]\[ x^2 - 4y^2. \][/tex]

Therefore, the product of [tex]\((x + 2y)(x - 2y)\)[/tex] is:

[tex]\[ x^2 - 4y^2. \][/tex]