The profit for a product is given by [tex]$P(x) = -11x^2 + 990x - 8800$[/tex], where [tex]$x$[/tex] is the number of units produced and sold.

How many units give break even (that is, give zero profit) for this product?

The number of units that give break even for this product are [tex]$\square$[/tex].
(Use a comma to separate answers as needed.)



Answer :

To determine the number of units that give break even for the product, we need to find the values of [tex]\( x \)[/tex] that make the profit function [tex]\( P(x) \)[/tex] equal to zero. The profit function given is:

[tex]\[ P(x) = -11x^2 + 990x - 8800 \][/tex]

Setting the profit function equal to zero gives us the equation:

[tex]\[ -11x^2 + 990x - 8800 = 0 \][/tex]

This is a quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where [tex]\( a = -11 \)[/tex], [tex]\( b = 990 \)[/tex], and [tex]\( c = -8800 \)[/tex].

To solve the quadratic equation, we use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substituting the values [tex]\( a = -11 \)[/tex], [tex]\( b = 990 \)[/tex], and [tex]\( c = -8800 \)[/tex] into the formula:

[tex]\[ x = \frac{-990 \pm \sqrt{990^2 - 4(-11)(-8800)}}{2(-11)} \][/tex]

[tex]\[ x = \frac{-990 \pm \sqrt{980100 - 387200}}{-22} \][/tex]

[tex]\[ x = \frac{-990 \pm \sqrt{592900}}{-22} \][/tex]

[tex]\[ x = \frac{-990 \pm 770}{-22} \][/tex]

Now, we have two possible solutions:

1) [tex]\( x = \frac{-990 + 770}{-22} \)[/tex]

[tex]\[ x = \frac{-220}{-22} \][/tex]

[tex]\[ x = 10 \][/tex]

2) [tex]\( x = \frac{-990 - 770}{-22} \)[/tex]

[tex]\[ x = \frac{-1760}{-22} \][/tex]

[tex]\[ x = 80 \][/tex]

Thus, the number of units that give break even for the product are [tex]\( 10 \)[/tex] and [tex]\( 80 \)[/tex].

So, the number of units that break even for this product are [tex]\( \boxed{10, 80} \)[/tex].