Interconverting Hydronium and Hydroxide Concentration at 25°C

An aqueous solution at [tex]25^{\circ} \text{C}[/tex] has a [tex]H_3O^{+}[/tex] concentration of 0.085 M. Calculate the [tex]OH^{-}[/tex] concentration. Be sure your answer has 2 significant digits.



Answer :

To find the hydroxide ion ([tex]\(OH^{-}\)[/tex]) concentration in an aqueous solution at [tex]\(25^{\circ} C\)[/tex] given the hydronium ion ([tex]\(H_3O^+\)[/tex]) concentration, you can use the ion-product constant of water ([tex]\(K_w\)[/tex]). At [tex]\(25^{\circ} C\)[/tex], [tex]\(K_w\)[/tex] is [tex]\(1.0 \times 10^{-14} \, \text{mol}^2/\text{L}^2\)[/tex].

Given:
- [tex]\( [H_3O^+] = 0.085 \, \text{M} \)[/tex]

The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the ion-product constant of water:
[tex]\[ K_w = [H_3O^+][OH^-] \][/tex]

Rearranging this equation to solve for the hydroxide ion concentration:
[tex]\[ [OH^-] = \frac{K_w}{[H_3O^+]} \][/tex]

Substitute the given values into the equation:
[tex]\[ [OH^-] = \frac{1.0 \times 10^{-14} \, \text{mol}^2/\text{L}^2}{0.085 \, \text{mol/L}} \][/tex]

Calculate the hydroxide ion concentration:
[tex]\[ [OH^-] = \frac{1.0 \times 10^{-14}}{0.085} \approx 1.176 \times 10^{-13} \, \text{mol/L} \][/tex]

To express this result with 2 significant digits, round the value:
[tex]\[ [OH^-] \approx 0.0 \, \text{mol/L} \][/tex]

Thus, the [tex]\(OH^-\)[/tex] concentration in the solution is approximately [tex]\(0.0 \, \text{mol/L}\)[/tex].