Answer :

Sure, let's evaluate the integral [tex]\( \int \frac{dx}{\sqrt{2x - x^2}} \)[/tex].

1. Rewriting the integrand:

To simplify the expression inside the square root, we first complete the square for the quadratic [tex]\(2x - x^2\)[/tex].

[tex]\[ 2x - x^2 = - (x^2 - 2x) \][/tex]

To complete the square, we rewrite it as:

[tex]\[ x^2 - 2x = (x - 1)^2 - 1 \][/tex]

Substituting back, we get:

[tex]\[ 2x - x^2 = -[(x - 1)^2 - 1] = 1 - (x - 1)^2 \][/tex]

2. Substituting back into the integral:

With the completed square form, the integral becomes:

[tex]\[ \int \frac{dx}{\sqrt{1 - (x - 1)^2}} \][/tex]

3. Recognizing the standard form:

The integrand is now in a standard form that matches the arcsine function. Recall the integral:

[tex]\[ \int \frac{du}{\sqrt{1 - u^2}} = \arcsin(u) + C \][/tex]

In our case, [tex]\(u = x - 1\)[/tex].

4. Applying the standard formula:

Using [tex]\( u = x - 1 \)[/tex], the integral becomes:

[tex]\[ \int \frac{dx}{\sqrt{1 - (x - 1)^2}} = \arcsin(x - 1) + C \][/tex]

5. Final result:

Therefore, the evaluated integral is:

[tex]\[ \int \frac{dx}{\sqrt{2x - x^2}} = \arcsin(x - 1) + C \][/tex]

Here, [tex]\(C\)[/tex] is the constant of integration.