Select the correct answer.

Consider this absolute value function.
[tex]\[ f(x) = |x - 5| \][/tex]

How can function [tex]\( f \)[/tex] be written as a piecewise function?

A. [tex]\( f(x) = \left\{
\begin{array}{ll}
x - 5, & x \geq -5 \\
-x - 5, & x \ \textless \ -5
\end{array}
\right. \)[/tex]

B. [tex]\( f(x) = \left\{
\begin{array}{ll}
x - 5, & x \geq -5 \\
-x + 5, & x \ \textless \ -5
\end{array}
\right. \)[/tex]

C. [tex]\( f(x) = \left\{
\begin{array}{ll}
x - 5, & x \geq 5 \\
-x + 5, & x \ \textless \ 5
\end{array}
\right. \)[/tex]

D. [tex]\( f(x) = \left\{
\begin{array}{ll}
x - 5, & x \geq 5 \\
-x - 5, & x \ \textless \ 5
\end{array}
\right. \)[/tex]



Answer :

To write the absolute value function [tex]\( f(x) = |x - 5| \)[/tex] as a piecewise function, we need to consider the definition of the absolute value. The absolute value function [tex]\( |u| \)[/tex] is defined as follows:

[tex]\[ |u| = \begin{cases} u, & \text{if } u \geq 0 \\ -u, & \text{if } u < 0 \end{cases} \][/tex]

For our specific function [tex]\( f(x) = |x - 5| \)[/tex], we can identify [tex]\( u = x - 5 \)[/tex]. Applying the absolute value definition to [tex]\( u = x - 5 \)[/tex] gives two cases:

1. When [tex]\( x - 5 \geq 0 \)[/tex]:
[tex]\(|x - 5| = x - 5\)[/tex]

This simplifies to:
[tex]\[ \begin{cases} x - 5, & \text{if } x \geq 5 \end{cases} \][/tex]

2. When [tex]\( x - 5 < 0 \)[/tex]:
[tex]\(|x - 5| = -(x - 5) = 5 - x\)[/tex]

This simplifies to:
[tex]\[ \begin{cases} 5 - x, & \text{if } x < 5 \end{cases} \][/tex]

Combining these two parts, we get the piecewise function representation:

[tex]\[ f(x) = \begin{cases} x - 5, & \text{if } x \geq 5 \\ 5 - x, & \text{if } x < 5 \end{cases} \][/tex]

Given the provided options:

A. [tex]\( f(x) = \left\{\begin{array}{ll}x - 5, & x \geq -5 \\ -x - 5, & x < -5\end{array}\right. \)[/tex]

B. [tex]\( f(x) = \left\{\begin{array}{ll}x - 5, & x \geq -5 \\ -x + 5, & x < -5\end{array}\right. \)[/tex]

C. [tex]\( f(x) = \left\{\begin{array}{ll}x - 5, & x \geq 5 \\ -x + 5, & x < 5\end{array}\right. \)[/tex]

D. [tex]\( f(x) = \left\{\begin{array}{ll}x - 5, & x \geq 5 \\ -x - 5, & x < 5\end{array}\right. \)[/tex]

From our piecewise representation of [tex]\( f(x) = |x - 5| \)[/tex]:

[tex]\[ f(x) = \begin{cases} x - 5, & \text{if } x \geq 5 \\ 5 - x, & \text{if } x < 5 \end{cases} \][/tex]

The correct answer is:

C. [tex]\( f(x) = \left\{\begin{array}{ll}x - 5, & x \geq 5 \\ -x + 5, & x < 5\end{array}\right. \)[/tex]

Therefore, the correct option is [tex]\( \boxed{3} \)[/tex].