1) Mr. De Guzman bought [tex]$7 \frac{1}{2} \, \text{kg}$[/tex] of meat. He used [tex]$2 \frac{3}{4} \, \text{kg}$[/tex] for Afritada and the rest for Pochero. How many kilograms of meat did he use for the Pochero?

Asked: How many kilograms of meat did he use for the Pochero?

Given:
- Total meat: [tex][tex]$7 \frac{1}{2} \, \text{kg}$[/tex][/tex]
- Meat used for Afritada: [tex]$2 \frac{3}{4} \, \text{kg}$[/tex]

Operation: Subtraction

Number sentence: [tex]$7 \frac{1}{2} - 2 \frac{3}{4}$[/tex]

Solution:



Answer :

Of course! Let's break this question down step-by-step:

Asked:
How many kilograms of meat did Mr. De Guzman use for the pochero after using some for the Afritada?

Given:
- Mr. De Guzman bought [tex]\(7 \frac{1}{2} \)[/tex] kilograms of meat.
- He used [tex]\(2 \frac{3}{4} \)[/tex] kilograms of meat for Afritada.

Operation:
We need to subtract the amount of meat used for Afritada from the total amount of meat to determine how much meat is left for the pochero.

Number sentence:
[tex]\[ 7 \frac{1}{2} - 2 \frac{3}{4} \][/tex]

Solution:
1. Convert the mixed numbers to improper fractions:
[tex]\[ 7 \frac{1}{2} = 7 + \frac{1}{2} = \frac{14}{2} + \frac{1}{2} = \frac{15}{2} \][/tex]
[tex]\[ 2 \frac{3}{4} = 2 + \frac{3}{4} = \frac{8}{4} + \frac{3}{4} = \frac{11}{4} \][/tex]

2. Find a common denominator to perform the subtraction:
The common denominator for 2 and 4 is 4.
[tex]\[ \frac{15}{2} = \frac{15 \times 2}{2 \times 2} = \frac{30}{4} \][/tex]

3. Subtract the fractions:
[tex]\[ \frac{30}{4} - \frac{11}{4} = \frac{30 - 11}{4} = \frac{19}{4} \][/tex]

4. Convert the improper fraction back to a mixed number:
[tex]\[ \frac{19}{4} = 4 \frac{3}{4} \][/tex]

Therefore, the amount of meat Mr. De Guzman used for the pochero is [tex]\(4 \frac{3}{4} \)[/tex] kilograms.