Rewrite the given equation in the form [tex]\((x + p)^2 + q\)[/tex] and find the values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex].

[tex]\[ x^2 + 8x - 13 = (x + p)^2 + q \][/tex]

Find the values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex].



Answer :

Certainly! Let's solve for the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] by matching the coefficients of the given equation:

[tex]\[ x^2 + 8x - 13 = (x + p)^2 + q \][/tex]

First, let's expand the right-hand side of the equation:

[tex]\[ (x + p)^2 + q = x^2 + 2px + p^2 + q \][/tex]

Now, we match the corresponding coefficients of [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and the constant terms from both sides of the equation.

### Step 1: Match the coefficient of [tex]\( x^2 \)[/tex]

From the left-hand side:
[tex]\[ x^2 + 8x - 13 \][/tex]

From the right-hand side:
[tex]\[ x^2 + 2px + p^2 + q \][/tex]

We see that the coefficients of [tex]\( x^2 \)[/tex] are already equal:

[tex]\[ 1 = 1 \][/tex]

### Step 2: Match the coefficient of [tex]\( x \)[/tex]

From the left-hand side:
[tex]\[ 8x \][/tex]

From the right-hand side:
[tex]\[ 2px \][/tex]

Set the coefficients of [tex]\( x \)[/tex] equal to each other:

[tex]\[ 8 = 2p \][/tex]

Solve for [tex]\( p \)[/tex]:

[tex]\[ 2p = 8 \\ p = \frac{8}{2} \\ p = 4 \][/tex]

### Step 3: Match the constant terms

From the left-hand side:
[tex]\[ -13 \][/tex]

From the right-hand side:
[tex]\[ p^2 + q \][/tex]

Set the constant terms equal to each other, substitute [tex]\( p = 4 \)[/tex]:

[tex]\[ -13 = 4^2 + q \][/tex]

Solve for [tex]\( q \)[/tex]:

[tex]\[ -13 = 16 + q \\ q = -13 - 16 \\ q = -29 \][/tex]

Thus, the values are:

[tex]\[ p = 4 \][/tex]
[tex]\[ q = -29 \][/tex]