Malik's solution to the equation [tex]\frac{2}{5} x - 4 y = 10[/tex] when [tex]x = 60[/tex] is shown below.

[tex]\[
\begin{array}{l}
\frac{2}{5} x - 4 y = 10 \\
\frac{2}{5} (60) - 4 y = 10 \\
24 - 4 y = 10 \\
24 - 4 y + 4 y = 10 + 4 y \\
24 = 10 + 4 y \\
24 - 10 = 4 y \\
14 = 4 y \\
y = \frac{14}{4} \\
y = \frac{7}{2} \\
y = 3.5
\end{array}
\][/tex]

What error did Malik make first when solving the equation [tex]\frac{2}{5} x - 4 y = 10[/tex]?

A. Malik did not multiply [tex]\frac{5}{2}(250)[/tex] correctly.
B. Malik added 240 to each side of the equation.

Correct the steps and identify the first mistake Malik made.



Answer :

Let's break down Malik's solution step by step and identify where he made his first error in solving the equation [tex]\(\frac{2}{5} x - 4y = 10\)[/tex] when [tex]\(y = 60\)[/tex]:

1. Starting Equation:
[tex]\[ \frac{2}{5} x - 4 y = 10 \][/tex]

2. Substitute [tex]\(y = 60\)[/tex]:
[tex]\[ \frac{2}{5} x - 4(60) = 10 \][/tex]

3. Simplify the substitution:
[tex]\[ \frac{2}{5} x - 240 = 10 \][/tex]

4. Add 240 to both sides to isolate [tex]\(\frac{2}{5} x\)[/tex]:
[tex]\[ \frac{2}{5} x - 240 + 240 = 10 + 240 \][/tex]
[tex]\[ \frac{2}{5} x = 250 \][/tex]

5. Multiply both sides by [tex]\(\frac{5}{2}\)[/tex] to solve for [tex]\(x\)[/tex]:
[tex]\[ \left(\frac{5}{2}\right)\left(\frac{2}{5} x\right) = \left(\frac{5}{2}\right)(250) \][/tex]
[tex]\[ x = 625 \][/tex]

Now, we see that there is a discrepancy between Malik's result and the correct calculation. Let’s pinpoint the error in Malik's work:

- At the last step, Malik wrote:
[tex]\[ \left(\frac{5}{2}\right)(250) \][/tex]

- Malik concluded:
[tex]\[ x = 265 \][/tex]

The correct multiplication should be:
[tex]\[ \left(\frac{5}{2}\right) \times 250 = \frac{5 \times 250}{2} = \frac{1250}{2} = 625 \][/tex]

Hence, the first error Malik made was in the computation of:
[tex]\[ \left(\frac{5}{2}\right) \times 250 \][/tex]

Malik did not multiply [tex]\(\left(\frac{5}{2}\right)(250)\)[/tex] correctly.