Answer :
Let's work through the given quadratic expression step-by-step as if factorizing it manually:
Given quadratic expression:
[tex]\[ 4x^2 + 8x - 60 \][/tex]
### Step 1: Identify the coefficients
- The coefficient of [tex]\(x^2\)[/tex] is 4.
- The coefficient of [tex]\(x\)[/tex] is 8.
- The constant term is -60.
### Step 2: Find two numbers that multiply to [tex]\((4 -60) = -240\)[/tex] and add to 8
- The numbers are 20 and -12 because [tex]\(20 (-12) = -240\)[/tex] and [tex]\(20 + (-12) = 8\)[/tex].
### Step 3: Rewrite the middle term (8x) using 20x and -12x
[tex]\[ 4x^2 + 8x - 60 = 4x^2 + 20x - 12x - 60 \][/tex]
### Step 4: Group the terms
[tex]\[ 4x^2 + 20x - 12x - 60 \][/tex]
Group the first two terms and the last two terms:
[tex]\[ = (4x^2 + 20x) + (-12x - 60) \][/tex]
### Step 5: Factor out the greatest common factor (GCF) from each group
From [tex]\(4x^2 + 20x\)[/tex], factor out [tex]\(4x\)[/tex]:
[tex]\[ = 4x(x + 5) \][/tex]
From [tex]\(-12x - 60\)[/tex], factor out [tex]\(-12\)[/tex]:
[tex]\[ = -12(x + 5) \][/tex]
### Step 6: Factor out the common binomial factor [tex]\((x + 5)\)[/tex]
[tex]\[ 4x(x + 5) - 12(x + 5) = (4x - 12)(x + 5) \][/tex]
### Step 7: Simplify the coefficients
[tex]\[ (4x - 12)(x + 5) = 4(x - 3)(x + 5) \][/tex]
Thus, the completely factorized form of the given quadratic expression [tex]\(4x^2 + 8x - 60\)[/tex] is:
[tex]\[ 4(x - 3)(x + 5) \][/tex]
So, the final filled expression is:
[tex]\[ \left(4 \left( x - 3 \right) \left( x + 5 \right) \right) \][/tex]
Given quadratic expression:
[tex]\[ 4x^2 + 8x - 60 \][/tex]
### Step 1: Identify the coefficients
- The coefficient of [tex]\(x^2\)[/tex] is 4.
- The coefficient of [tex]\(x\)[/tex] is 8.
- The constant term is -60.
### Step 2: Find two numbers that multiply to [tex]\((4 -60) = -240\)[/tex] and add to 8
- The numbers are 20 and -12 because [tex]\(20 (-12) = -240\)[/tex] and [tex]\(20 + (-12) = 8\)[/tex].
### Step 3: Rewrite the middle term (8x) using 20x and -12x
[tex]\[ 4x^2 + 8x - 60 = 4x^2 + 20x - 12x - 60 \][/tex]
### Step 4: Group the terms
[tex]\[ 4x^2 + 20x - 12x - 60 \][/tex]
Group the first two terms and the last two terms:
[tex]\[ = (4x^2 + 20x) + (-12x - 60) \][/tex]
### Step 5: Factor out the greatest common factor (GCF) from each group
From [tex]\(4x^2 + 20x\)[/tex], factor out [tex]\(4x\)[/tex]:
[tex]\[ = 4x(x + 5) \][/tex]
From [tex]\(-12x - 60\)[/tex], factor out [tex]\(-12\)[/tex]:
[tex]\[ = -12(x + 5) \][/tex]
### Step 6: Factor out the common binomial factor [tex]\((x + 5)\)[/tex]
[tex]\[ 4x(x + 5) - 12(x + 5) = (4x - 12)(x + 5) \][/tex]
### Step 7: Simplify the coefficients
[tex]\[ (4x - 12)(x + 5) = 4(x - 3)(x + 5) \][/tex]
Thus, the completely factorized form of the given quadratic expression [tex]\(4x^2 + 8x - 60\)[/tex] is:
[tex]\[ 4(x - 3)(x + 5) \][/tex]
So, the final filled expression is:
[tex]\[ \left(4 \left( x - 3 \right) \left( x + 5 \right) \right) \][/tex]