Type the correct answer in the box.

A printer creates a right triangular card where the hypotenuse, [tex]$h$[/tex], is three times as long as the shorter leg. What is the length of the longer leg, [tex]$I$[/tex], in terms of [tex]$h$[/tex]? Write the answer in simplest form by replacing [tex]$a$[/tex], [tex]$b$[/tex], and [tex]$c$[/tex] with the correct values.

[tex]$I = \frac{a \sqrt{b} h}{c}$[/tex] [tex]$\square$[/tex]



Answer :

To determine the length of the longer leg [tex]\( I \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] for a right triangular card where the hypotenuse [tex]\( h \)[/tex] is three times as long as the shorter leg, we follow these steps:

1. Let the shorter leg be [tex]\( x \)[/tex].
2. Given that the hypotenuse [tex]\( h \)[/tex] is three times the length of the shorter leg, we have:
[tex]\[ h = 3x \][/tex]

3. According to the Pythagorean theorem for a right triangle:
[tex]\[ (shorter \, leg)^2 + (longer \, leg)^2 = (hypotenuse)^2 \][/tex]
Therefore:
[tex]\[ x^2 + (I)^2 = (3x)^2 \][/tex]

4. Simplify the equation:
[tex]\[ x^2 + I^2 = 9x^2 \][/tex]

5. Rearrange to solve for the longer leg [tex]\( I \)[/tex]:
[tex]\[ I^2 = 9x^2 - x^2 \][/tex]
[tex]\[ I^2 = 8x^2 \][/tex]
[tex]\[ I = \sqrt{8x^2} \][/tex]

6. Simplify the expression under the square root:
[tex]\[ I = x \sqrt{8} \][/tex]
[tex]\[ I = x \cdot 2\sqrt{2} \][/tex]

7. Substitute [tex]\( x = \frac{h}{3} \)[/tex] back into the expression:
[tex]\[ I = \frac{h}{3} \cdot 2\sqrt{2} \][/tex]
[tex]\[ I = \frac{2\sqrt{2} h}{3} \][/tex]

Therefore, the length of the longer leg [tex]\( I \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] is:
[tex]\[ I = \frac{2\sqrt{2} h}{3} \][/tex]

In the expression [tex]\( \frac{a \sqrt{b} h}{c} \)[/tex], we have:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 2 \)[/tex]
- [tex]\( c = 3 \)[/tex]

So, the correct answer is:
[tex]\[ I = \frac{2 \sqrt{2} h}{3} \][/tex]