Assume that [tex]$C(x)$[/tex] is in dollars and [tex]$x$[/tex] is the number of units produced and sold. For the total-cost function [tex]$C(x) = 0.01x^2 + 0.4x + 30$[/tex], find [tex][tex]$\Delta C$[/tex][/tex] and [tex]$C^{\prime}(x)$[/tex] when [tex]$x = 90$[/tex] and [tex]$\Delta x = 1$[/tex].

[tex]\Delta C = \$ \square[/tex]

(Simplify your answer. Type an integer or decimal rounded to two decimal places as needed.)

[tex]C^{\prime}(x)[/tex] when [tex]$x = 90[tex]$[/tex] is [tex]\$[/tex] \square[/tex] per unit.

(Type an integer or a decimal.)



Answer :

To solve this problem, consider the given total cost function [tex]\( C(x) = 0.01 x^2 + 0.4 x + 30 \)[/tex], where [tex]\( x \)[/tex] is the number of units produced and sold.

We need to find two things:

1. [tex]\(\Delta C\)[/tex] when [tex]\( x = 90 \)[/tex] and [tex]\( \Delta x = 1 \)[/tex]
2. The derivative [tex]\( C'(x) \)[/tex] evaluated at [tex]\( x = 90 \)[/tex]

### Step 1: Calculate [tex]\(\Delta C\)[/tex]

Given [tex]\( x = 90 \)[/tex] and [tex]\( \Delta x = 1 \)[/tex]:
[tex]\[ \Delta C = C(x + \Delta x) - C(x) \][/tex]

Substitute [tex]\( x \)[/tex]:
[tex]\[ \Delta C = C(90 + 1) - C(90) \][/tex]

Calculate [tex]\( C(90) \)[/tex]:
[tex]\[ C(90) = 0.01 \times (90)^2 + 0.4 \times 90 + 30 \][/tex]
[tex]\[ C(90) = 0.01 \times 8100 + 36 + 30 \][/tex]
[tex]\[ C(90) = 81 + 36 + 30 \][/tex]
[tex]\[ C(90) = 147 \][/tex]

Calculate [tex]\( C(91) \)[/tex]:
[tex]\[ C(91) = 0.01 \times (91)^2 + 0.4 \times 91 + 30 \][/tex]
[tex]\[ C(91) = 0.01 \times 8281 + 36.4 + 30 \][/tex]
[tex]\[ C(91) = 82.81 + 36.4 + 30 \][/tex]
[tex]\[ C(91) = 149.21 \][/tex]

Then:
[tex]\[ \Delta C = C(91) - C(90) = 149.21 - 147 \][/tex]
[tex]\[ \Delta C = 2.21 \][/tex]

### Step 2: Calculate the derivative [tex]\( C'(x) \)[/tex]

The derivative of the cost function:
[tex]\[ C(x) = 0.01 x^2 + 0.4 x + 30 \][/tex]
[tex]\[ C'(x) = 0.02 x + 0.4 \][/tex]

Evaluate [tex]\( C'(x) \)[/tex] at [tex]\( x = 90 \)[/tex]:
[tex]\[ C'(90) = 0.02 \times 90 + 0.4 \][/tex]
[tex]\[ C'(90) = 1.8 + 0.4 \][/tex]
[tex]\[ C'(90) = 2.2 \][/tex]

### Final Results

[tex]\[ \Delta C = \$2.21 \][/tex]

[tex]\[ C'(x) \text{ when } x = 90 \text{ is } \$2.2 \text{ per unit} \][/tex]