Select the correct answer.

Which expression is equivalent to the given expression? Assume the denominator does not equal zero.

[tex]\frac{12 x^9 y^4}{6 x^3 y^2}[/tex]

A. [tex]2 x^3 y^2[/tex]
B. [tex]\frac{2}{x^5 y^2}[/tex]
C. [tex]\frac{2}{x^2 y^2}[/tex]
D. [tex]2 x^6 y^2[/tex]



Answer :

To solve the problem of simplifying the expression [tex]\(\frac{12 x^9 y^4}{6 x^3 y^2}\)[/tex], let's follow a step-by-step approach.

### Step 1: Simplify the Coefficients
First, simplify the numerical part of the fraction:

[tex]\[ \frac{12}{6} = 2 \][/tex]

### Step 2: Simplify the [tex]\(x\)[/tex]-terms
Next, simplify the exponent of [tex]\(x\)[/tex]:

[tex]\[ \frac{x^9}{x^3} = x^{9-3} = x^6 \][/tex]

### Step 3: Simplify the [tex]\(y\)[/tex]-terms
Now, simplify the exponent of [tex]\(y\)[/tex]:

[tex]\[ \frac{y^4}{y^2} = y^{4-2} = y^2 \][/tex]

### Step 4: Combine the Simplified Parts
Combining the simplified numerical, [tex]\(x\)[/tex]-terms, and [tex]\(y\)[/tex]-terms:

[tex]\[ 2 \cdot x^6 \cdot y^2 = 2x^6y^2 \][/tex]

### Conclusion
The simplified expression [tex]\(\frac{12 x^9 y^4}{6 x^3 y^2}\)[/tex] is equivalent to [tex]\(2 x^6 y^2\)[/tex].

Thus, the correct answer is:

D. [tex]\(2 x^6 y^2\)[/tex]