Given the equation

[tex]\[ p=\frac{2}{n}+3 \][/tex]

where [tex]\( n \neq 0 \)[/tex] and [tex]\( p \ \textgreater \ 3 \)[/tex], which equation correctly expresses [tex]\( n \)[/tex] in terms of [tex]\( p \)[/tex]?

A. [tex]\( n=\frac{p}{2}-3 \)[/tex]

B. [tex]\( n=\frac{p}{2}+3 \)[/tex]

C. [tex]\( n=\frac{2}{p-3} \)[/tex]

D. [tex]\( n=-\frac{2}{p+3} \)[/tex]



Answer :

To determine the equation that correctly expresses [tex]\( n \)[/tex] in terms of [tex]\( p \)[/tex] given the equation [tex]\( p = \frac{2}{n} + 3 \)[/tex], follow the steps below:

1. Isolate the term containing [tex]\( n \)[/tex]:
[tex]\[ p = \frac{2}{n} + 3 \][/tex]
Subtract 3 from both sides to isolate the term with [tex]\( n \)[/tex]:
[tex]\[ p - 3 = \frac{2}{n} \][/tex]

2. Solve for [tex]\( n \)[/tex]:
We need to express [tex]\( n \)[/tex] in terms of [tex]\( p \)[/tex]. To do this, take the reciprocal of both sides:
[tex]\[ \frac{1}{p - 3} = \frac{n}{2} \][/tex]
Then, multiply both sides by 2 to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{2}{p - 3} \][/tex]

Therefore, the equation that correctly expresses [tex]\( n \)[/tex] in terms of [tex]\( p \)[/tex] is:
[tex]\[ n = \frac{2}{p - 3} \][/tex]

Thus, the correct answer is option C: [tex]\( n = \frac{2}{p - 3} \)[/tex].