What is the radian equivalent for [tex]180^{\circ}[/tex]?

A. [tex]2 \pi[/tex] radians
B. [tex]\pi[/tex] radians
C. [tex]\frac{\pi}{2}[/tex] radians



Answer :

To find the radian equivalent of [tex]\(180^\circ\)[/tex], we'll use the fact that [tex]\(180^\circ\)[/tex] is a special angle in the unit circle.

1. Understanding Degrees and Radians:
- One complete revolution (a circle) is [tex]\(360^\circ\)[/tex].
- The same complete revolution in radians is [tex]\(2\pi\)[/tex] radians.

2. Relating Degrees to Radians:
- We can set up a proportion to relate degrees and radians. Specifically, we know that [tex]\(360^\circ\)[/tex] corresponds to [tex]\(2\pi\)[/tex] radians.

3. Setting up the Proportion:
- To find the radian measure for [tex]\(180^\circ\)[/tex], observe that [tex]\(180^\circ\)[/tex] is half of [tex]\(360^\circ\)[/tex].
- Therefore, the radian measure should be half of [tex]\(2\pi\)[/tex] radians.

4. Calculating the Radian Equivalent:
- [tex]\[ \text{Radian equivalent of } 180^\circ = \frac{1}{2} \times 2\pi = \pi \text{ radians} \][/tex]

So, the radian equivalent of [tex]\(180^\circ\)[/tex] is [tex]\(\pi\)[/tex] radians.

Thus, the correct answer is:
[tex]\[ \pi \text{ radians} \][/tex]