Find: [tex]\left(6 m^5 + 3 - m^3 - 4 m\right) - \left(-m^5 + 2 m^3 - 4 m + 6\right)[/tex]

1. Write the subtraction of a polynomial expression as addition of the additive inverse.
[tex]\left(6 m^5 + 3 - m^3 - 4 m\right) + \left(m^5 - 2 m^3 + 4 m - 6\right)[/tex]

2. Rewrite terms that are subtracted as addition of the opposite.
[tex]6 m^5 + 3 + \left(-m^3\right) + (-4 m) + m^5 + \left(-2 m^3\right) + 4 m + (-6)[/tex]

3. Group like terms.
[tex]\left[6 m^5 + m^5\right] + [3 + (-6)] + \left[\left(-m^3\right) + \left(-2 m^3\right)\right] + [(-4 m) + 4 m][/tex]

4. Combine like terms.
[tex]7 m^5 + (-3) + (-3 m^3) + 0[/tex]

5. Write the resulting polynomial in standard form.
[tex]7 m^5 - 3 m^3 - 3[/tex]



Answer :

Sure, let's solve the given polynomial subtraction problem step by step.

Given:
[tex]\[ \left(6 m^5+3-m^3-4 m\right)-\left(-m^5+2 m^3-4 m+6\right) \][/tex]

### Step 1: Write subtraction of a polynomial expression as addition of the additive inverse.

Rewriting subtraction as addition, we get:
[tex]\[ \left(6 m^5+3-m^3-4 m\right) + \left(m^5 - 2 m^3 + 4 m - 6\right) \][/tex]

### Step 2: Rewrite terms that are subtracted as addition of the opposite.

So, we have:
[tex]\[ 6 m^5 + 3 + (-m^3) + (-4 m) + m^5 + (-2 m^3) + 4 m + (-6) \][/tex]

### Step 3: Group like terms.

Now, group the coefficients of similar powers of [tex]\(m\)[/tex]:
[tex]\[ [6 m^5 + m^5] + [3 + (-6)] + [(-m^3) + (-2 m^3)] + [(-4 m) + 4 m] \][/tex]

### Step 4: Combine like terms.

Combine the coefficients for each power of [tex]\(m\)[/tex]:

1. Combine the [tex]\(m^5\)[/tex] terms:
[tex]\[ 6 m^5 + m^5 = 7 m^5 \][/tex]

2. Combine the constant terms:
[tex]\[ 3 + (-6) = -3 \][/tex]

3. Combine the [tex]\(m^3\)[/tex] terms:
[tex]\[ (-m^3) + (-2 m^3) = -3 m^3 \][/tex]

4. Combine the [tex]\(m\)[/tex] terms:
[tex]\[ (-4 m) + 4 m = 0 m \][/tex]

### Step 5: Write the resulting polynomial in standard form.

After combining like terms, the resulting polynomial is:
[tex]\[ 7 m^5 - 3 m^3 + 0 m - 3 \][/tex]

Therefore, the final answer in standard form is:
[tex]\[ 7 m^5 - 3 m^3 - 3 \][/tex]

In conclusion, the coefficients you asked for are:
- Coefficient of [tex]\(m^5\)[/tex]: [tex]\(7\)[/tex]
- Coefficient of [tex]\(m^3\)[/tex]: [tex]\(-3\)[/tex]
- Coefficient of [tex]\(m\)[/tex]: [tex]\(0\)[/tex]
- Constant term: [tex]\(-3\)[/tex]