3. If the distance from point [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is [tex]\(\frac{81}{4} \, m\)[/tex], and the distance from point [tex]\( B \)[/tex] to [tex]\( C \)[/tex] is [tex]\(\frac{31}{2} \, m\)[/tex], what is the total distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex]?



Answer :

To determine the total distance from point [tex]\( A \)[/tex] to point [tex]\( C \)[/tex], we need to sum the individual distances from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] and from [tex]\( B \)[/tex] to [tex]\( C \)[/tex].

Here are the detailed steps to solve the problem:

1. Find the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]:
The distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is given as [tex]\( \frac{81}{4} \)[/tex] meters.

[tex]\[ \frac{81}{4} = 20.25 \text{ meters} \][/tex]

2. Find the distance from [tex]\( B \)[/tex] to [tex]\( C \)[/tex]:
The distance from [tex]\( B \)[/tex] to [tex]\( C \)[/tex] is given as [tex]\( \frac{31}{2} \)[/tex] meters.

[tex]\[ \frac{31}{2} = 15.5 \text{ meters} \][/tex]

3. Calculate the total distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex]:
To find the total distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex], add the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] and the distance from [tex]\( B \)[/tex] to [tex]\( C \)[/tex]:

[tex]\[ \text{Total distance} = 20.25 \text{ meters} + 15.5 \text{ meters} \][/tex]

4. Perform the addition:

[tex]\[ 20.25 + 15.5 = 35.75 \text{ meters} \][/tex]

Thus, the total distance from point [tex]\( A \)[/tex] to point [tex]\( C \)[/tex] is [tex]\( 35.75 \)[/tex] meters.