If [tex]\sin (3x + 9)^{\circ} = \cos (5x - 7)^{\circ}[/tex], what is the value of [tex]x[/tex]?

A. 8
B. 11
C. 33
D. 42



Answer :

To solve the equation [tex]\(\sin (3x + 9)^\circ = \cos (5x - 7)^\circ\)[/tex], we can use the trigonometric identity that connects sine and cosine:

[tex]\[ \sin \theta = \cos (90^\circ - \theta) \][/tex]

Applying this identity, we can rewrite [tex]\(\cos (5x - 7)^\circ\)[/tex] as:

[tex]\[ \cos (5x - 7)^\circ = \sin \left(90^\circ - (5x - 7)^\circ\right) \][/tex]

So our original equation becomes:

[tex]\[ \sin (3x + 9)^\circ = \sin \left(90^\circ - (5x - 7)^\circ\right) \][/tex]

Simplify the argument of the sine function on the right-hand side:

[tex]\[ 90^\circ - (5x - 7)^\circ = 90^\circ - 5x + 7 = (97^\circ - 5x) \][/tex]

Now the equation is:

[tex]\[ \sin (3x + 9)^\circ = \sin (97^\circ - 5x) \][/tex]

Since the sine function is periodic and its values are equal when the angles differ by multiples of [tex]\(360^\circ\)[/tex] or are identical, we can equate the angles (since we are dealing with small angles in degrees, we can ignore the multiples of [tex]\(360^\circ\)[/tex]):

[tex]\[ 3x + 9 = 97 - 5x \][/tex]

To find [tex]\(x\)[/tex], we solve this equation step-by-step:

1. Add [tex]\(5x\)[/tex] to both sides:

[tex]\[ 3x + 5x + 9 = 97 \][/tex]

2. Simplify the left-hand side:

[tex]\[ 8x + 9 = 97 \][/tex]

3. Subtract 9 from both sides:

[tex]\[ 8x = 97 - 9 \][/tex]

4. Simplify the right-hand side:

[tex]\[ 8x = 88 \][/tex]

5. Finally, divide both sides by 8:

[tex]\[ x = \frac{88}{8} \][/tex]
[tex]\[ x = 11 \][/tex]

Therefore, the value of [tex]\(x\)[/tex] is:

[tex]\[ \boxed{11} \][/tex]