Q5. The frequency of vibration of a string is given by [tex]v = \frac{P}{2 l}\left[\frac{F}{m}\right]^{1 / 2}[/tex]. Here, [tex]P[/tex] is the number of segments in the string and [tex]l[/tex] is the length. The dimensional formula for [tex]m[/tex] will be:

(a) [tex]\left[M^0 L T^{-1}\right][/tex]
(b) [tex]\left[M L^0 T^{-1}\right][/tex]
(c) [tex]\left[M L^{-1} T^0\right][/tex]
(d) [tex]\left[M^0 L^0 T^0\right][/tex]



Answer :

To determine the dimensional formula for [tex]\( m \)[/tex] in the given equation for the frequency of vibration of a string, we will analyze the dimensions of each term in the equation:

[tex]\[ v = \frac{P}{2 l}\left[\frac{F}{m}\right]^{1 / 2} \][/tex]

1. Identify the dimensions of each variable:

- [tex]\( v \)[/tex]: frequency, which has the dimensions [tex]\([T^{-1}]\)[/tex].
- [tex]\( P \)[/tex]: number of segments, which is dimensionless.
- [tex]\( l \)[/tex]: length, which has the dimensions [tex]\([L]\)[/tex].
- [tex]\( F \)[/tex]: force, which has the dimensions [tex]\([M L T^{-2}]\)[/tex].
- [tex]\( m \)[/tex]: mass per unit length, which we need to find the dimensions of.

2. Rewrite the equation with the dimension notation:

[tex]\[ \left[T^{-1}\right] = \frac{\left[\text{dimensionless}\right]}{\left[L\right]} \left[\frac{\left[M L T^{-2}\right]}{m}\right]^{1 / 2} \][/tex]

Simplifying, the equation becomes:

[tex]\[ \left[T^{-1}\right] = \frac{1}{\left[L\right]} \left[\frac{\left[M L T^{-2}\right]}{m}\right]^{1 / 2} \][/tex]

3. Simplify the dimensions inside the square root:

[tex]\[ \left[T^{-1}\right] = \frac{1}{\left[L\right]} \left[\left[\frac{M L T^{-2}}{m}\right]^{1 / 2}\right] \][/tex]

4. Isolate the dimension of [tex]\( m \)[/tex]:

To simplify further, let's isolate the square root term:

[tex]\[ \left[\frac{M L T^{-2}}{m}\right]^{1 / 2} = [L T^{-1}] \][/tex]

Squaring both sides to remove the square root:

[tex]\[ \frac{M L T^{-2}}{m} = L^2 T^{-2} \][/tex]

5. Solve for [tex]\( m \)[/tex]:

Multiply both sides by [tex]\( m \)[/tex] and divide by [tex]\( L^2 T^{-2} \)[/tex]:

[tex]\[ m = \frac{M L T^{-2}}{L^2 T^{-2}} \][/tex]

Simplify the expression:

[tex]\[ m = M L^{-1} \][/tex]

6. Write the dimensional formula for [tex]\( m \)[/tex]:

[tex]\[ m = [M L^{-1} T^0] \][/tex]

Therefore, the dimensional formula for [tex]\( m \)[/tex] is [tex]\([M L^{-1} T^0]\)[/tex].

The correct choice is [tex]\( \boxed{3} \)[/tex].