Answer :
Certainly! Let's convert each of the given rational numbers into decimal numbers step-by-step.
### a. [tex]\(\frac{3}{4}\)[/tex]
Convert [tex]\(\frac{3}{4}\)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
### b. [tex]\(1 \frac{1}{8}\)[/tex]
Convert [tex]\(1 \frac{1}{8}\)[/tex] (which is a mixed number) to a decimal:
[tex]\[ 1 \frac{1}{8} = 1 + \frac{1}{8} = 1 + 0.125 = 1.125 \][/tex]
### c. [tex]\(\frac{9}{5}\)[/tex]
Convert [tex]\(\frac{9}{5}\)[/tex] to a decimal:
[tex]\[ \frac{9}{5} = 1.8 \][/tex]
### d. [tex]\(\frac{26}{25}\)[/tex]
Convert [tex]\(\frac{26}{25}\)[/tex] to a decimal:
[tex]\[ \frac{26}{25} = 1.04 \][/tex]
### e. [tex]\(4 \frac{1}{16}\)[/tex]
Convert [tex]\(4 \frac{1}{16}\)[/tex] (which is a mixed number) to a decimal:
[tex]\[ 4 \frac{1}{16} = 4 + \frac{1}{16} = 4 + 0.0625 = 4.0625 \][/tex]
### f. [tex]\(\frac{15}{32}\)[/tex]
Convert [tex]\(\frac{15}{32}\)[/tex] to a decimal:
[tex]\[ \frac{15}{32} = 0.46875 \][/tex]
### g. [tex]\(\frac{4}{3}\)[/tex]
Convert [tex]\(\frac{4}{3}\)[/tex] to a decimal:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
### h. [tex]\(\frac{7}{12}\)[/tex]
Convert [tex]\(\frac{7}{12}\)[/tex] to a decimal:
[tex]\[ \frac{7}{12} = 0.5833333333333334 \][/tex]
### i. [tex]\(\frac{1}{9}\)[/tex]
Convert [tex]\(\frac{1}{9}\)[/tex] to a decimal:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
### j. [tex]\(\frac{19}{3}\)[/tex]
Convert [tex]\(\frac{19}{3}\)[/tex] to a decimal:
[tex]\[ \frac{19}{3} = 6.333333333333333 \][/tex]
Here are the decimal conversions for each rational number:
a. [tex]\( \frac{3}{4} = 0.75 \)[/tex]
b. [tex]\( 1 \frac{1}{8} = 1.125 \)[/tex]
c. [tex]\( \frac{9}{5} = 1.8 \)[/tex]
d. [tex]\( \frac{26}{25} = 1.04 \)[/tex]
e. [tex]\( 4 \frac{1}{16} = 4.0625 \)[/tex]
f. [tex]\( \frac{15}{32} = 0.46875 \)[/tex]
g. [tex]\( \frac{4}{3} = 1.3333333333333333 \)[/tex]
h. [tex]\( \frac{7}{12} = 0.5833333333333334 \)[/tex]
i. [tex]\( \frac{1}{9} = 0.1111111111111111 \)[/tex]
j. [tex]\( \frac{19}{3} = 6.333333333333333 \)[/tex]
### a. [tex]\(\frac{3}{4}\)[/tex]
Convert [tex]\(\frac{3}{4}\)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
### b. [tex]\(1 \frac{1}{8}\)[/tex]
Convert [tex]\(1 \frac{1}{8}\)[/tex] (which is a mixed number) to a decimal:
[tex]\[ 1 \frac{1}{8} = 1 + \frac{1}{8} = 1 + 0.125 = 1.125 \][/tex]
### c. [tex]\(\frac{9}{5}\)[/tex]
Convert [tex]\(\frac{9}{5}\)[/tex] to a decimal:
[tex]\[ \frac{9}{5} = 1.8 \][/tex]
### d. [tex]\(\frac{26}{25}\)[/tex]
Convert [tex]\(\frac{26}{25}\)[/tex] to a decimal:
[tex]\[ \frac{26}{25} = 1.04 \][/tex]
### e. [tex]\(4 \frac{1}{16}\)[/tex]
Convert [tex]\(4 \frac{1}{16}\)[/tex] (which is a mixed number) to a decimal:
[tex]\[ 4 \frac{1}{16} = 4 + \frac{1}{16} = 4 + 0.0625 = 4.0625 \][/tex]
### f. [tex]\(\frac{15}{32}\)[/tex]
Convert [tex]\(\frac{15}{32}\)[/tex] to a decimal:
[tex]\[ \frac{15}{32} = 0.46875 \][/tex]
### g. [tex]\(\frac{4}{3}\)[/tex]
Convert [tex]\(\frac{4}{3}\)[/tex] to a decimal:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
### h. [tex]\(\frac{7}{12}\)[/tex]
Convert [tex]\(\frac{7}{12}\)[/tex] to a decimal:
[tex]\[ \frac{7}{12} = 0.5833333333333334 \][/tex]
### i. [tex]\(\frac{1}{9}\)[/tex]
Convert [tex]\(\frac{1}{9}\)[/tex] to a decimal:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
### j. [tex]\(\frac{19}{3}\)[/tex]
Convert [tex]\(\frac{19}{3}\)[/tex] to a decimal:
[tex]\[ \frac{19}{3} = 6.333333333333333 \][/tex]
Here are the decimal conversions for each rational number:
a. [tex]\( \frac{3}{4} = 0.75 \)[/tex]
b. [tex]\( 1 \frac{1}{8} = 1.125 \)[/tex]
c. [tex]\( \frac{9}{5} = 1.8 \)[/tex]
d. [tex]\( \frac{26}{25} = 1.04 \)[/tex]
e. [tex]\( 4 \frac{1}{16} = 4.0625 \)[/tex]
f. [tex]\( \frac{15}{32} = 0.46875 \)[/tex]
g. [tex]\( \frac{4}{3} = 1.3333333333333333 \)[/tex]
h. [tex]\( \frac{7}{12} = 0.5833333333333334 \)[/tex]
i. [tex]\( \frac{1}{9} = 0.1111111111111111 \)[/tex]
j. [tex]\( \frac{19}{3} = 6.333333333333333 \)[/tex]