Answer :
Sure, let's convert each of the given rational numbers into their decimal equivalents step by step.
### a. [tex]\(\frac{3}{4}\)[/tex]
To convert [tex]\(\frac{3}{4}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
### b. [tex]\(1 \frac{1}{8}\)[/tex]
First, convert the mixed number to an improper fraction:
[tex]\[ 1 \frac{1}{8} = \frac{9}{8} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{9}{8} = 1.125 \][/tex]
### c. [tex]\(\frac{9}{5}\)[/tex]
To convert [tex]\(\frac{9}{5}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{9}{5} = 1.8 \][/tex]
### d. [tex]\(\frac{26}{25}\)[/tex]
To convert [tex]\(\frac{26}{25}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{26}{25} = 1.04 \][/tex]
### e. [tex]\(4 \frac{1}{16}\)[/tex]
First, convert the mixed number to an improper fraction:
[tex]\[ 4 \frac{1}{16} = \frac{65}{16} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{65}{16} = 4.0625 \][/tex]
### f. [tex]\(\frac{15}{32}\)[/tex]
To convert [tex]\(\frac{15}{32}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{15}{32} = 0.46875 \][/tex]
### g. [tex]\(\frac{4}{3}\)[/tex]
To convert [tex]\(\frac{4}{3}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
### h. [tex]\(\frac{7}{12}\)[/tex]
To convert [tex]\(\frac{7}{12}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{7}{12} = 0.5833333333333334 \][/tex]
### i. [tex]\(\frac{1}{9}\)[/tex]
To convert [tex]\(\frac{1}{9}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
### j. [tex]\(\frac{19}{3}\)[/tex]
To convert [tex]\(\frac{19}{3}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{19}{3} = 6.333333333333333 \][/tex]
### Summary of Results:
1. [tex]\(\frac{3}{4} = 0.75\)[/tex]
2. [tex]\(1 \frac{1}{8} = 1.125\)[/tex]
3. [tex]\(\frac{9}{5} = 1.8\)[/tex]
4. [tex]\(\frac{26}{25} = 1.04\)[/tex]
5. [tex]\(4 \frac{1}{16} = 4.0625\)[/tex]
6. [tex]\(\frac{15}{32} = 0.46875\)[/tex]
7. [tex]\(\frac{4}{3} = 1.3333333333333333\)[/tex]
8. [tex]\(\frac{7}{12} = 0.5833333333333334\)[/tex]
9. [tex]\(\frac{1}{9} = 0.1111111111111111\)[/tex]
10. [tex]\(\frac{19}{3} = 6.333333333333333\)[/tex]
These are the decimal equivalents of the given rational numbers.
### a. [tex]\(\frac{3}{4}\)[/tex]
To convert [tex]\(\frac{3}{4}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
### b. [tex]\(1 \frac{1}{8}\)[/tex]
First, convert the mixed number to an improper fraction:
[tex]\[ 1 \frac{1}{8} = \frac{9}{8} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{9}{8} = 1.125 \][/tex]
### c. [tex]\(\frac{9}{5}\)[/tex]
To convert [tex]\(\frac{9}{5}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{9}{5} = 1.8 \][/tex]
### d. [tex]\(\frac{26}{25}\)[/tex]
To convert [tex]\(\frac{26}{25}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{26}{25} = 1.04 \][/tex]
### e. [tex]\(4 \frac{1}{16}\)[/tex]
First, convert the mixed number to an improper fraction:
[tex]\[ 4 \frac{1}{16} = \frac{65}{16} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{65}{16} = 4.0625 \][/tex]
### f. [tex]\(\frac{15}{32}\)[/tex]
To convert [tex]\(\frac{15}{32}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{15}{32} = 0.46875 \][/tex]
### g. [tex]\(\frac{4}{3}\)[/tex]
To convert [tex]\(\frac{4}{3}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
### h. [tex]\(\frac{7}{12}\)[/tex]
To convert [tex]\(\frac{7}{12}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{7}{12} = 0.5833333333333334 \][/tex]
### i. [tex]\(\frac{1}{9}\)[/tex]
To convert [tex]\(\frac{1}{9}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
### j. [tex]\(\frac{19}{3}\)[/tex]
To convert [tex]\(\frac{19}{3}\)[/tex] to a decimal, we divide the numerator by the denominator:
[tex]\[ \frac{19}{3} = 6.333333333333333 \][/tex]
### Summary of Results:
1. [tex]\(\frac{3}{4} = 0.75\)[/tex]
2. [tex]\(1 \frac{1}{8} = 1.125\)[/tex]
3. [tex]\(\frac{9}{5} = 1.8\)[/tex]
4. [tex]\(\frac{26}{25} = 1.04\)[/tex]
5. [tex]\(4 \frac{1}{16} = 4.0625\)[/tex]
6. [tex]\(\frac{15}{32} = 0.46875\)[/tex]
7. [tex]\(\frac{4}{3} = 1.3333333333333333\)[/tex]
8. [tex]\(\frac{7}{12} = 0.5833333333333334\)[/tex]
9. [tex]\(\frac{1}{9} = 0.1111111111111111\)[/tex]
10. [tex]\(\frac{19}{3} = 6.333333333333333\)[/tex]
These are the decimal equivalents of the given rational numbers.