Answer :

To solve the expression [tex]\(\cos 40^\circ \cdot \cos 100^\circ \cdot \cos 160^\circ\)[/tex], we can employ trigonometric identities and the properties of cosine functions for specific angles. Let's break it down step-by-step:

### Step 1: Identify the angles

The angles in the given expression are [tex]\(40^\circ\)[/tex], [tex]\(100^\circ\)[/tex], and [tex]\(160^\circ\)[/tex]. Notice that:
- [tex]\(40^\circ + 100^\circ + 160^\circ = 300^\circ \neq 180^\circ\)[/tex], so they do not form a complete set of supplementary angles. However, we know some trigonometric properties about the involved angles.

### Step 2: Utilize trigonometric identities

We can use the known identity for cosine for angles that sum up to multiples of [tex]\(180^\circ\)[/tex]. We have the following identities:
- [tex]\(\cos(180^\circ - \theta) = -\cos(\theta)\)[/tex]

Using the above identity, re-write some of the angles:
- [tex]\(100^\circ = 180^\circ - 80^\circ \implies \cos 100^\circ = -\cos 80^\circ\)[/tex]
- [tex]\(160^\circ = 180^\circ - 20^\circ \implies \cos 160^\circ = -\cos 20^\circ\)[/tex]

### Step 3: Rewrite the expression with the known identities

Using the rewritten cosine functions, we have:
[tex]\[ \cos 40^\circ \cdot \cos 100^\circ \cdot \cos 160^\circ = \cos 40^\circ \cdot (-\cos 80^\circ) \cdot (-\cos 20^\circ) \][/tex]

Since the product of two negative cosines will be positive, we get:
[tex]\[ \cos 40^\circ \cdot \cos 100^\circ \cdot \cos 160^\circ = \cos 40^\circ \cdot \cos 80^\circ \cdot \cos 20^\circ \][/tex]

### Step 4: Use product-to-sum identities if needed

There are advanced trigonometric identities that help evaluate the product of cosines directly. In this case, we recognize that the expression [tex]\(\cos 40^\circ \cdot \cos 80^\circ \cdot \cos 20^\circ\)[/tex] can be directly related to a known trigonometric product identity for specific angles:
[tex]\[ \cos 40^\circ \cdot \cos 80^\circ \cdot \cos 20^\circ = \frac{1}{8} \][/tex]

### Conclusion

Therefore, the value of [tex]\(\cos 40^\circ \cdot \cos 100^\circ \cdot \cos 160^\circ\)[/tex] is indeed:
[tex]\[ \boxed{\frac{1}{8}} \][/tex]

When you further verify this numerically, it is confirmed that:
[tex]\[ \cos 40^\circ \cdot \cos 100^\circ \cdot \cos 160^\circ = 0.125 \][/tex]

Thus, the original trigonometric product simplifies to [tex]\(\frac{1}{8}\)[/tex], confirming the detailed analysis and identities used.