Math | Graded Assignment | Unit Test

(Score for Question 2: [tex]$\qquad$[/tex] of 5 points)

2. Graph the piecewise function.

[tex]
f(x)=\left\{\begin{array}{l}
3x - 5 \quad \text{if} \quad x \leq -1 \\
-2x + 3 \quad \text{if} \quad -1 \ \textless \ x \ \textless \ 4 \\
2 \quad \text{if} \quad x \geq 4
\end{array}\right.
[/tex]

Answer:



Answer :

To graph the given piecewise function, we'll consider each piece of the function separately and graph them according to their defined domains. Here is a step-by-step approach:

1. Identify the pieces of the function and their domains:
- [tex]\( f(x) = 3x - 5 \)[/tex] for [tex]\( x \leq -1 \)[/tex]
- [tex]\( f(x) = -2x + 3 \)[/tex] for [tex]\( -1 < x < 4 \)[/tex]
- [tex]\( f(x) = 2 \)[/tex] for [tex]\( x \geq 4 \)[/tex]

2. Graph each piece within its domain:

- For [tex]\( f(x) = 3x - 5 \)[/tex] [tex]\( (x \leq -1) \)[/tex]:
[tex]\[ \begin{aligned} &\text{We consider the range of } x \text{ values from } -10 \text{ to } -1.\\ &\text{Calculate } y \text{ values for } each \text{ } x \text{ } value.\\ & f(-10) = 3(-10) - 5 = -35 \\ & f(-9.9) = 3(-9.9) - 5 = -34.7 \\ & f(-9.8) = 3(-9.8) - 5 = -34.4 \\ & \vdots \\ & f(-1) = 3(-1) - 5 = -8 \end{aligned} \][/tex]
The points will be [tex]\((x, y) = (-10, -35), (-9.9, -34.7), \ldots, (-1, -8)\)[/tex].

- For [tex]\( f(x) = -2x + 3 \)[/tex] [tex]\( (-1 < x < 4) \)[/tex]:
[tex]\[ \begin{aligned} &\text{We consider the range of } x \text{ values from } -0.9 \text{ to } \text{ just below } 4.\\ &\text{Calculate } y \text{ values for } each \text{ x value.}\\ & f(-0.9) = -2(-0.9) + 3 = 4.8 \\ & f(-0.8) = -2(-0.8) + 3 = 4.6 \\ & f(-0.7) = -2(-0.7) + 3 = 4.4 \\ & \vdots \\ & f(3.9) = -2(3.9) + 3 = -4.8 \end{aligned} \][/tex]
The points will be [tex]\((x, y) = (-0.9, 4.8), (-0.8, 4.6), \ldots, (3.9, -4.8)\)[/tex].

- For [tex]\( f(x) = 2 \)[/tex] [tex]\( (x \geq 4) \)[/tex]:
[tex]\[ \begin{aligned} &\text{We consider the range of } x \text{ values starting just above } 4 \text{ to 10.}\\ & f(4) = 2 \\ & f(4.1) = 2 \\ & f(4.2) = 2 \\ & \vdots \\ & f(9.9) = 2 \end{aligned} \][/tex]
The points will be [tex]\((x, y) = (4, 2), (4.1, 2), \ldots, (9.9, 2)\)[/tex].

3. Plot the points and draw the graph:
- Plot the points [tex]\((x, y) = (-10, -35), (-9.9, -34.7), \ldots, (-1, -8)\)[/tex] and draw a line through them for [tex]\( f(x) = 3x - 5 \)[/tex] in the domain [tex]\( x \leq -1 \)[/tex].
- Plot the points [tex]\((x, y) = (-0.9, 4.8), (-0.8, 4.6), \ldots, (3.9, -4.8)\)[/tex] and draw a line through them for [tex]\( f(x) = -2x + 3 \)[/tex] in the domain [tex]\( -1 < x < 4 \)[/tex].
- Plot the points [tex]\((x, y) = (4, 2), (4.1, 2), \ldots, (9.9, 2)\)[/tex] and draw a constant line for [tex]\( f(x) = 2 \)[/tex] in the domain [tex]\( x \geq 4 \)[/tex].

This process will give us the complete graph of the piecewise function, clearly showing each segment defined by the given conditions.