The table below gives the atomic mass and relative abundance values for the three isotopes of element [tex]$M$[/tex].

\begin{tabular}{|l|l|}
\hline
Relative abundance (\%) & Atomic mass (amu) \\
\hline
78.99 & 23.9850 \\
\hline
10.00 & 24.9858 \\
\hline
11.01 & 25.9826 \\
\hline
\end{tabular}

What is the average atomic mass (in amu) of element [tex]$M$[/tex]?

A. 2.86
B. 5.36
C. 24.30
D. 24.98



Answer :

To determine the average atomic mass of element [tex]\( M \)[/tex] based on the given isotopes and their relative abundances, we follow these steps:

1. Convert the Relative Abundances to Decimals:
The given relative abundances are in percentages and need to be converted to decimals.
[tex]\[ 78.99\% = 0.7899, \quad 10.00\% = 0.1000, \quad 11.01\% = 0.1101 \][/tex]

2. Calculate the Weighted Average Atomic Mass:
The average atomic mass is calculated by multiplying the decimal abundance of each isotope by its corresponding atomic mass and summing up these products.

Using the given values:
- For the isotope with an atomic mass of 23.9850 amu:
[tex]\[ 0.7899 \times 23.9850 = 18.9505115 \][/tex]
- For the isotope with an atomic mass of 24.9858 amu:
[tex]\[ 0.1000 \times 24.9858 = 2.49858 \][/tex]
- For the isotope with an atomic mass of 25.9826 amu:
[tex]\[ 0.1101 \times 25.9826 = 2.85592426 \][/tex]

3. Sum the Products:
Adding these values together gives the average atomic mass:
[tex]\[ 18.9505115 + 2.49858 + 2.85592426 = 24.30501576 \][/tex]

So, the average atomic mass of element [tex]\( M \)[/tex] is approximately [tex]\( 24.30 \)[/tex] amu. Therefore, the correct answer is:

[tex]\[ \boxed{24.30} \][/tex]