A triangle on a coordinate plane is translated according to the rule [tex]T_{-8,4}(x, y)[/tex]. Which is another way to write this rule?

A. [tex](x, y) \rightarrow (x + 4, y - 8)[/tex]
B. [tex](x, y) \rightarrow (x - 4, y - 8)[/tex]
C. [tex](x, y) \rightarrow (x - 8, y + 4)[/tex]
D. [tex](x, y) \rightarrow (x + 8, y - 4)[/tex]



Answer :

To determine another way to write the translation rule [tex]\( T_{-8,4}(x, y) \)[/tex], we need to understand what [tex]\( T_{-8,4}(x, y) \)[/tex] means.

The translation rule [tex]\( T_{-8,4}(x, y) \)[/tex] indicates that we are moving each point [tex]\((x, y)\)[/tex] to a new position by following these steps:
1. Subtract 8 from the x-coordinate: [tex]\( x - 8 \)[/tex]
2. Add 4 to the y-coordinate: [tex]\( y + 4 \)[/tex]

So, the translation will transform a point [tex]\((x, y)\)[/tex] to [tex]\((x - 8, y + 4)\)[/tex].

Therefore, another way to write this translation rule is:

[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]

Among the given options, the correct one is:
[tex]\[ (x, y) \rightarrow (x-8, y+4) \][/tex]