Answer the following questions using what you've learned from this unit. Write your answers in the space provided. Be sure to show all work.

MIDPOINT AND DISTANCE FORMULAS

1. Find the midpoint of a segment.

Part I: What is the formula for finding the midpoint of a segment? Circle your choice. (1 point)

[tex]\[
\begin{tabular}{|l|l|}
\hline
A. $\left(x_1-x_2, y_1-y_2\right)$ & B. $\left(x_1+x_2, y_1+y_2\right)$ \\
\hline
C. $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$ & D. $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ \\
\hline
\end{tabular}
\][/tex]

Part II: Use the formula from Part I to find the midpoint of the segment with endpoints at [tex]\((-2,-1)\)[/tex] and [tex]\((0,9)\)[/tex]. Show your work. (2 points)



Answer :

### Part I

To find the midpoint of a segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we use the formula:

[tex]\[ \text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]

So, the correct choice is:

[tex]\[ \begin{tabular}{|l|l|} \hline A. $\left(x_1-x_2, y_1-y_2\right)$ & B. $\left(x_1+x_2, y_1+y_2\right)$ \\ \hline C. $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$ & \(\boxed{\text{D. } \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)} \) \\ \hline \end{tabular} \][/tex]

### Part II

Now, we will use the formula from Part I to find the midpoint of the segment with endpoints [tex]\((-2, -1)\)[/tex] and [tex]\((0, 9)\)[/tex].

Step-by-Step Solution:

1. Identify the coordinates of the endpoints:
- [tex]\( (x_1, y_1) = (-2, -1) \)[/tex]
- [tex]\( (x_2, y_2) = (0, 9) \)[/tex]

2. Substitute the coordinates into the midpoint formula:

[tex]\[ \text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]

3. Plugging in the values:

[tex]\[ \text{Midpoint} = \left(\frac{-2 + 0}{2}, \frac{-1 + 9}{2}\right) \][/tex]

4. Simplify the expressions inside the parentheses:

- For the x-coordinate:

[tex]\[ \frac{-2 + 0}{2} = \frac{-2}{2} = -1.0 \][/tex]

- For the y-coordinate:

[tex]\[ \frac{-1 + 9}{2} = \frac{8}{2} = 4.0 \][/tex]

5. Therefore, the midpoint of the segment is:

[tex]\[ \left(-1.0, 4.0\right) \][/tex]

So, the final answer, showing all work, is:

The midpoint of the segment with endpoints [tex]\((-2, -1)\)[/tex] and [tex]\((0, 9)\)[/tex] is [tex]\(\boxed{(-1.0, 4.0)}\)[/tex].