Turn B has a sector area of [tex]$\frac{51 \pi}{20}$[/tex]. What is the measure of the central angle for Turn B?

Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

[tex]
\text{m} / B =
\boxed{\square}
[/tex]



Answer :

To determine the measure of the central angle for a sector with an area of [tex]\(\frac{51 \pi}{20}\)[/tex], follow these steps:

1. Understand the formula for the area of a sector:
The formula for the area [tex]\(A\)[/tex] of a sector of a circle is given by:
[tex]\[ A = \frac{\theta}{360} \cdot \pi \cdot r^2 \][/tex]
where [tex]\(\theta\)[/tex] is the central angle in degrees, and [tex]\(r\)[/tex] is the radius of the circle.

2. Identify the given values:
- Sector area [tex]\(A = \frac{51 \pi}{20}\)[/tex]
- Radius [tex]\(r = 1\)[/tex]

3. Plug the given values into the sector area formula:
Using [tex]\(A\)[/tex] and [tex]\(r\)[/tex], we write:
[tex]\[ \frac{51 \pi}{20} = \frac{\theta}{360} \cdot \pi \cdot (1)^2 \][/tex]

4. Simplify the equation:
Since the radius [tex]\(r = 1\)[/tex], the formula reduces to:
[tex]\[ \frac{51 \pi}{20} = \frac{\theta \cdot \pi}{360} \][/tex]

5. Solve for [tex]\(\theta\)[/tex]:
- Remove [tex]\(\pi\)[/tex] from both sides of the equation:
[tex]\[ \frac{51}{20} = \frac{\theta}{360} \][/tex]
- To isolate [tex]\(\theta\)[/tex], multiply both sides by 360:
[tex]\[ \theta = \left(\frac{51}{20}\right) \cdot 360 \][/tex]

6. Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = 51 \cdot \frac{360}{20} \][/tex]
[tex]\[ \theta = 51 \cdot 18 \][/tex]
[tex]\[ \theta = 918 \][/tex]

Thus, the measure of the central angle for turn B is [tex]\(\boxed{918}\)[/tex].