A car's momentum is [tex]$p$[/tex] when it is traveling with a velocity of [tex]$v$[/tex]. If the velocity of that car doubles, what is the new momentum of the car?

A. [tex]\frac{1}{2} p[/tex]

B. [tex]p[/tex]

C. [tex]2 p[/tex]

D. [tex]4 p[/tex]



Answer :

To determine the new momentum of the car when its velocity doubles, let's follow a step-by-step approach:

1. Understand the relationship between momentum and velocity:
Momentum ([tex]\(p\)[/tex]) of an object is given by the product of its mass ([tex]\(m\)[/tex]) and its velocity ([tex]\(v\)[/tex]):
[tex]\[ p = m \cdot v \][/tex]

2. Initial scenario:
We are given that the initial momentum of the car is [tex]\(p\)[/tex] and its initial velocity is [tex]\(v\)[/tex].

3. Change in velocity:
The problem states that the velocity of the car doubles. Thus, the new velocity ([tex]\(v_{\text{new}}\)[/tex]) will be:
[tex]\[ v_{\text{new}} = 2v \][/tex]

4. Calculate the new momentum:
Since momentum is mass times velocity, the new momentum ([tex]\(p_{\text{new}}\)[/tex]) when the velocity doubles will be:
[tex]\[ p_{\text{new}} = m \cdot v_{\text{new}} \][/tex]
Substituting the new velocity:
[tex]\[ p_{\text{new}} = m \cdot (2v) \][/tex]

5. Factor in initial momentum:
Recall that the initial momentum [tex]\(p\)[/tex] is:
[tex]\[ p = m \cdot v \][/tex]
Therefore, the new momentum can be written as:
[tex]\[ p_{\text{new}} = 2 \cdot (m \cdot v) \][/tex]
[tex]\[ p_{\text{new}} = 2p \][/tex]

So, the new momentum of the car when its velocity doubles is:

[tex]\[ \boxed{2p} \][/tex]

Thus, the correct answer is [tex]\(2p\)[/tex].