Derek mixes [tex]$2 \frac{1}{3}$[/tex] cubic yards of concrete. If he estimates that the entire job will take [tex]$2 \frac{1}{2}$[/tex] times that amount, how many more cubic yards of concrete are needed?

A. [tex][tex]$3 \frac{1}{3}$[/tex][/tex]
B. [tex]$3 \frac{1}{2}$[/tex]
C. [tex]$4 \frac{5}{6}$[/tex]
D. [tex][tex]$5 \frac{5}{6}$[/tex][/tex]



Answer :

Let's solve the problem step by step:

1. First, we need to convert the mixed numbers to improper fractions.

Derek's initial mix amount is:
[tex]\[ 2 \frac{1}{3} = 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \][/tex]

The multiplier for the job estimate is:
[tex]\[ 2 \frac{1}{2} = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \][/tex]

2. Multiply these fractions to find the total amount of concrete needed:
[tex]\[ \text{Total amount needed} = \frac{7}{3} \times \frac{5}{2} = \frac{35}{6} \][/tex]

3. Convert this amount back to a mixed number:
[tex]\[ \frac{35}{6} = 5 \frac{5}{6} \][/tex]

4. Now, we need to find out how many more cubic yards of concrete are needed beyond the initial mix:
[tex]\[ \text{More needed} = \frac{35}{6} - \frac{7}{3} \][/tex]

To subtract the fractions, convert [tex]\( \frac{7}{3} \)[/tex] to a fraction with the same denominator as [tex]\( \frac{35}{6} \)[/tex]:
[tex]\[ \frac{7}{3} = \frac{14}{6} \][/tex]

Then:
[tex]\[ \text{More needed} = \frac{35}{6} - \frac{14}{6} = \frac{21}{6} = 3 \frac{1}{2} \][/tex]

Therefore, the amount of concrete Derek needs beyond his initial mix is:

[tex]\[ \boxed{3 \frac{1}{2}} \][/tex]

So, the correct option is B. [tex]\(3 \frac{1}{2}\)[/tex].