Given the equation

[tex]\[ 0 = (2y - 1)(8 - y) \][/tex]

Let [tex]\( y = u \)[/tex] and [tex]\( y = d \)[/tex] be unique solutions to the given equation. What is the value of [tex]\( u \cdot d \)[/tex]?



Answer :

Sure, let’s solve the equation step by step and find the product of its solutions.

The given equation is:

[tex]\[ (2y - 1)(8 - y) = 0 \][/tex]

For the product of two factors to be zero, at least one of the factors must be zero. Hence, we set each factor equal to zero and solve for [tex]\(y\)[/tex]:

1. Set the first factor to zero:
[tex]\[ 2y - 1 = 0 \][/tex]

Add 1 to both sides:
[tex]\[ 2y = 1 \][/tex]

Divide by 2:
[tex]\[ y = \frac{1}{2} \][/tex]

So, [tex]\(u = \frac{1}{2}\)[/tex].

2. Set the second factor to zero:
[tex]\[ 8 - y = 0 \][/tex]

Add [tex]\(y\)[/tex] to both sides:
[tex]\[ 8 = y \][/tex]

So, [tex]\(d = 8\)[/tex].

Now we have the two solutions: [tex]\( u = \frac{1}{2} \)[/tex] and [tex]\( d = 8 \)[/tex].

To find the value of [tex]\( u \cdot d \)[/tex], we multiply these solutions:

[tex]\[ u \cdot d = \left(\frac{1}{2}\right) \cdot 8 \][/tex]

Simplify the multiplication:

[tex]\[ u \cdot d = \frac{1}{2} \cdot 8 = 4 \][/tex]

Thus, the value of [tex]\( u \cdot d \)[/tex] is:

[tex]\[ \boxed{4} \][/tex]