The expression [tex]$5(k+x) + 7k$[/tex] is equivalent to the expression [tex]$5x - 1$[/tex]. What is the value of [tex][tex]$k$[/tex][/tex], where [tex]$k$[/tex] is a constant?



Answer :

To determine the value of [tex]\( k \)[/tex] such that the expression [tex]\( 5(k + x) + 7k \)[/tex] is equivalent to the expression [tex]\( 5x - 1 \)[/tex], we need to follow these steps:

1. Expand and Simplify the Left-Hand Side:

Start with the left-hand expression:
[tex]\[ 5(k + x) + 7k \][/tex]

Distribute the [tex]\( 5 \)[/tex] across the terms inside the parentheses:
[tex]\[ 5k + 5x + 7k \][/tex]

Combine the terms involving [tex]\( k \)[/tex]:
[tex]\[ 5x + 12k \][/tex]

2. Set the Expressions Equal to Each Other:

Now that we have simplified the left-hand side to [tex]\( 5x + 12k \)[/tex], we can set it equal to the right-hand side expression:
[tex]\[ 5x + 12k = 5x - 1 \][/tex]

3. Isolate [tex]\( k \)[/tex]:

To solve for [tex]\( k \)[/tex], subtract [tex]\( 5x \)[/tex] from both sides of the equation:
[tex]\[ 12k = -1 \][/tex]

4. Solve for [tex]\( k \)[/tex]:

Divide both sides of the equation by 12 to isolate [tex]\( k \)[/tex]:
[tex]\[ k = \frac{-1}{12} \][/tex]

Thus, the value of [tex]\( k \)[/tex] that satisfies the given equation is:
[tex]\[ k = -\frac{1}{12} \][/tex]