Given [tex]$f(x)=x^2-7x+10$[/tex] and [tex]$g(x)=x^2-x-20$[/tex], find the [tex]y[/tex]-intercept of [tex]\left(\frac{g}{f}\right)(x)[/tex].

A. 0
B. [tex]-2[/tex]
C. [tex]\frac{2}{3}[/tex]
D. [tex]-\frac{1}{2}[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function [tex]\(\left(\frac{g}{f}\right)(x)\)[/tex], where [tex]\( f(x) = x^2 - 7x + 10 \)[/tex] and [tex]\( g(x) = x^2 - x - 20 \)[/tex], follow these steps:

1. Understand that the [tex]\( y \)[/tex]-intercept of a function is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].

2. First, substitute [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] to determine their values at this point:
[tex]\[ f(0) = 0^2 - 7 \cdot 0 + 10 = 10 \][/tex]
[tex]\[ g(0) = 0^2 - 0 - 20 = -20 \][/tex]

3. Next, evaluate [tex]\(\left(\frac{g}{f}\right)(x)\)[/tex] at [tex]\( x = 0 \)[/tex], which means we need to find [tex]\(\frac{g(0)}{f(0)}\)[/tex]:
[tex]\[ \left(\frac{g}{f}\right)(0) = \frac{g(0)}{f(0)} = \frac{-20}{10} = -2 \][/tex]

4. Therefore, the [tex]\( y \)[/tex]-intercept of the function [tex]\(\left(\frac{g}{f}\right)(x)\)[/tex] is [tex]\(-2\)[/tex].

Based on this step-by-step solution, the correct answer is:
[tex]\[ \boxed{-2} \][/tex]