Subtract. Write your answer as a fraction, whole number, or mixed number.

[tex]\[ 12 \frac{3}{10} - 1 \frac{9}{10} = \][/tex]

[tex]\[\square\][/tex]



Answer :

Sure, let's solve the problem step by step.

1. Convert the mixed numbers to improper fractions.
- For [tex]\( 12 \frac{3}{10} \)[/tex]:
- Whole number part: 12
- Fractional part: [tex]\(\frac{3}{10}\)[/tex]
- To convert this to an improper fraction, multiply the whole number part by the denominator and add the numerator:
[tex]\[ 12 \times 10 + 3 = 120 + 3 = 123 \][/tex]
- Thus, [tex]\( 12 \frac{3}{10} \)[/tex] converts to [tex]\( \frac{123}{10} \)[/tex].

- For [tex]\( 1 \frac{9}{10} \)[/tex]:
- Whole number part: 1
- Fractional part: [tex]\(\frac{9}{10}\)[/tex]
- To convert this to an improper fraction, multiply the whole number part by the denominator and add the numerator:
[tex]\[ 1 \times 10 + 9 = 10 + 9 = 19 \][/tex]
- Thus, [tex]\( 1 \frac{9}{10} \)[/tex] converts to [tex]\( \frac{19}{10} \)[/tex].

2. Subtract the fractions:
- We have:
[tex]\[ \frac{123}{10} - \frac{19}{10} \][/tex]
- Since the denominators are the same, we directly subtract the numerators:
[tex]\[ \frac{123 - 19}{10} = \frac{104}{10} \][/tex]

3. Simplify the resulting fraction if possible:
- The greatest common divisor of 104 and 10 is 2. So, divide both the numerator and the denominator by 2:
[tex]\[ \frac{104 \div 2}{10 \div 2} = \frac{52}{5} \][/tex]

4. The fraction [tex]\(\frac{52}{5}\)[/tex] can be converted into a mixed number:
- Divide the numerator by the denominator:
[tex]\[ 52 \div 5 = 10 \, \text{R} \, 2 \][/tex]
- This means:
[tex]\[ 52 = 5 \times 10 + 2 \][/tex]
- Thus, [tex]\( \frac{52}{5} \)[/tex] can be written as:
[tex]\[ 10 \frac{2}{5} \][/tex]

Therefore, the result of [tex]\( 12 \frac{3}{10} - 1 \frac{9}{10} \)[/tex] is [tex]\( \boxed{10 \frac{2}{5}} \)[/tex].