Which of the following is equivalent to [tex]$36^{-\frac{1}{2}}$[/tex]?

A. [tex]$-18$[/tex]

B. [tex][tex]$-6$[/tex][/tex]

C. [tex]$\frac{1}{18}$[/tex]

D. [tex]$\frac{1}{6}$[/tex]



Answer :

To determine which of the given options is equivalent to [tex]\(36^{-\frac{1}{2}}\)[/tex], we'll proceed step by step.

1. Understanding the expression:
The given expression is [tex]\(36^{-\frac{1}{2}}\)[/tex]. Let's break it down:
- The base is [tex]\(36\)[/tex].
- The exponent is [tex]\(-\frac{1}{2}\)[/tex].

2. Interpreting the exponent:
The exponent [tex]\(-\frac{1}{2}\)[/tex] means two things:
- The negative sign indicates a reciprocal.
- The fraction [tex]\(\frac{1}{2}\)[/tex] indicates a square root.

Therefore, [tex]\(36^{-\frac{1}{2}}\)[/tex] can be rewritten as [tex]\(\frac{1}{36^{\frac{1}{2}}}\)[/tex].

3. Calculating the square root:
We need to find the square root of 36. The square root of 36 is:
[tex]\[ \sqrt{36} = 6 \][/tex]

4. Taking the reciprocal:
Now, taking the reciprocal of 6, we get:
[tex]\[ \frac{1}{6} \][/tex]

So, [tex]\(36^{-\frac{1}{2}} = \frac{1}{6}\)[/tex].

5. Final Verification:
Comparing this result with the given options:
- [tex]\(-18\)[/tex]
- [tex]\(-6\)[/tex]
- [tex]\(\frac{1}{18}\)[/tex]
- [tex]\(\frac{1}{6}\)[/tex]

We see that [tex]\(\frac{1}{6}\)[/tex] matches our result.

Therefore, the correct answer is [tex]\(\frac{1}{6}\)[/tex].