In the following chemical reaction:

[tex]\[ 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) \][/tex]

1. How many moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex]?



Answer :

To determine how many moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex], we first need to look at the given balanced chemical equation:

[tex]\[ 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) \][/tex]

This equation tells us that 1 mole of [tex]\( O_2 \)[/tex] reacts with 2 moles of [tex]\( H_2 \)[/tex] to produce 2 moles of [tex]\( H_2O \)[/tex].

Next, we use the stoichiometric relationship between [tex]\( O_2 \)[/tex] and [tex]\( H_2O \)[/tex]. From the equation, we see that:

1 mole of [tex]\( O_2 \)[/tex] produces 2 moles of [tex]\( H_2O \)[/tex].

Given that we have 6 moles of [tex]\( O_2 \)[/tex]:

To find the moles of [tex]\( H_2O \)[/tex] produced, we can multiply the number of moles of [tex]\( O_2 \)[/tex] by the stoichiometric ratio of [tex]\( H_2O \)[/tex] to [tex]\( O_2 \)[/tex], which is 2:1.

So, we have:
[tex]\[ 6 \text{ moles of } O_2 \times \frac{2 \text{ moles of } H_2O}{1 \text{ mole of } O_2} = 12 \text{ moles of } H_2O \][/tex]

Thus, 12 moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex].