Which expression is equivalent to [tex]\frac{\left(3 m^{-1} n^2\right)^4}{\left(2 m^{-2} n\right)^3}[/tex]? Assume [tex]m \neq 0, n \neq 0[/tex].

A. [tex]2 m^2 n^5[/tex]
B. [tex]\frac{81 m^2 n^5}{8}[/tex]
C. [tex]2 m^2 n^2[/tex]
D. [tex]\frac{81 m^2 n^2}{8}[/tex]



Answer :

Sure, let's solve the given expression step-by-step:

Given expression:

[tex]\[ \frac{\left(3 m^{-1} n^2\right)^4}{\left(2 m^{-2} n\right)^3} \][/tex]

First, let's simplify the numerator:

[tex]\[ (3 m^{-1} n^2)^4 \][/tex]

We apply the exponent to each term inside the parentheses:

[tex]\[ = 3^4 \cdot (m^{-1})^4 \cdot (n^2)^4 \][/tex]

Calculating each term individually:

[tex]\[ = 81 \cdot m^{-4} \cdot n^8 \][/tex]

So, the numerator becomes:

[tex]\[ 81 m^{-4} n^8 \][/tex]

Now, let's simplify the denominator:

[tex]\[ (2 m^{-2} n)^3 \][/tex]

We apply the exponent to each term inside the parentheses:

[tex]\[ = 2^3 \cdot (m^{-2})^3 \cdot n^3 \][/tex]

Calculating each term individually:

[tex]\[ = 8 \cdot m^{-6} \cdot n^3 \][/tex]

So, the denominator becomes:

[tex]\[ 8 m^{-6} n^3 \][/tex]

Now, putting the simplified numerator and denominator together, we have:

[tex]\[ \frac{81 m^{-4} n^8}{8 m^{-6} n^3} \][/tex]

To simplify this fraction, we divide the coefficients:

[tex]\[ = \frac{81}{8} \][/tex]

Next, we simplify the exponents of [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:

[tex]\[ \frac{m^{-4}}{m^{-6}} = m^{-4 - (-6)} = m^{-4 + 6} = m^2 \][/tex]

[tex]\[ \frac{n^8}{n^3} = n^{8-3} = n^5 \][/tex]

Combining all the simplified parts, we get:

[tex]\[ \frac{81}{8} \cdot m^2 \cdot n^5 \][/tex]

Thus, the equivalent expression is:

[tex]\[ \frac{81 m^2 n^5}{8} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\frac{81 m^2 n^5}{8}} \][/tex]